1
|
Becker RC, Tantry US, Khan M, Gurbel PA. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2025; 58:15-49. [PMID: 39179952 PMCID: PMC11762605 DOI: 10.1007/s11239-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A heightened risk for thrombosis is a hallmark of COVID-19. Expansive clinical experience and medical literature have characterized small (micro) and large (macro) vessel involvement of the venous and arterial circulatory systems. Most events occur in patients with serious or critical illness in the hyperacute (first 1-2 weeks) or acute phases (2-4 weeks) of SARS-CoV-2 infection. However, thrombosis involving the venous, arterial, and microcirculatory systems has been reported in the subacute (4-8 weeks), convalescent (> 8-12 weeks) and chronic phases (> 12 weeks) among patients with mild-to-moderate illness. The purpose of the current focused review is to highlight the distinguishing clinical features, pathological components, and potential mechanisms of venous, arterial, and microvascular thrombosis in patients with COVID-19. The overarching objective is to better understand the proclivity for thrombosis, laying a solid foundation for screening and surveillance modalities, preventive strategies, and optimal patient management.
Collapse
Affiliation(s)
- Richard C Becker
- Cardiovascular Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| | - Muhammad Khan
- Division of General Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| |
Collapse
|
2
|
Sha'ari NI, Ismail A, Abdul Aziz AF, Suddin LS, Azzeri A, Sk Abd Razak R, Mad Tahir NS. Cardiovascular diseases as risk factors of post-COVID syndrome: a systematic review. BMC Public Health 2024; 24:1846. [PMID: 38987743 PMCID: PMC11238467 DOI: 10.1186/s12889-024-19300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND A growing proportion of people experience incomplete recovery months after contracting coronavirus disease 2019 (COVID-19). These COVID-19 survivors develop a condition known as post-COVID syndrome (PCS), where COVID-19 symptoms persist for > 12 weeks after acute infection. Limited studies have investigated PCS risk factors that notably include pre-existing cardiovascular diseases (CVD), which should be examined considering the most recent PCS data. This review aims to identify CVD as a risk factor for PCS development in COVID-19 survivors. METHODS Following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) checklist, systematic literature searches were performed in the PubMed, Scopus, and Web of Science databases from the earliest date available to June 2023. Data from observational studies in English that described the association between CVD and PCS in adults (≥ 18 years old) were included. A minimum of two authors independently performed the screening, study selection, data extraction, data synthesis, and quality assessment (Newcastle-Ottawa Scale). The protocol of this review was registered under PROSPERO (ID: CRD42023440834). RESULTS In total, 594 studies were screened after duplicates and non-original articles had been removed. Of the 11 included studies, CVD including hypertension (six studies), heart failure (three studies), and others (two studies) were significantly associated with PCS development with different factors considered. The included studies were of moderate to high methodological quality. CONCLUSION Our review highlighted that COVID-19 survivors with pre-existing CVD have a significantly greater risk of developing PCS symptomology than survivors without pre-existing CVD. As heart failure, hypertension and other CVD are associated with a higher risk of developing PCS, comprehensive screening and thorough examinations are essential to minimise the impact of PCS and improve patients' disease progression.
Collapse
Affiliation(s)
- Nur Insyirah Sha'ari
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras Campus, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Aniza Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras Campus, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
- Faculty of Public Health, Universitas Sumatera Utara, North Sumatra, Jalan Universitas No. 21 Kampus USU, Medan, 20155, Indonesia.
| | - Aznida Firzah Abdul Aziz
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras Campus, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Leny Suzana Suddin
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, 47000, Selangor, Malaysia
| | - Amirah Azzeri
- Department of Primary Care, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Negeri Sembilan, Nilai, 71800, Malaysia
| | - Ruhana Sk Abd Razak
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras Campus, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nur Syazana Mad Tahir
- Federal Government Administrative Centre, Ministry of Health Malaysia, Pusat Pentadbiran Kerajaan Persekutuan, Wilayah Persekutuan Putrajaya, Putrajaya, 62000, Malaysia
| |
Collapse
|
3
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Kutlutürk I, Tokuç EÖ, Karabaş L, Rückert R, Kaya M, Karagöz A, Munk MR. How the immune response to the structural proteins of SARS-CoV-2 affects the retinal vascular endothelial cells: an immune thrombotic and/or endotheliopathy process with in silico modeling. Immunol Res 2024; 72:50-71. [PMID: 37642808 DOI: 10.1007/s12026-023-09412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Thrombotic events associated with SARS-CoV-2 at the vascular endothelium still remains unclear. The aim of the current study is to determine the relationship between cellular proteins on the (ocular) vascular endothelial surface and the immune thrombotic and/or endotheliopathy process elicited by SARS-CoV-2 using an in-silico modeling. The structural S (spike glycoprotein), N (nucleocapsid protein), M (membrane protein), and E (envelope protein) proteins, an accessory protein (ORF1ab) of SARS-CoV-2 and 158 cellular proteins associated with retinal vascular endothelial cell surface or structure were included in this study for comparison of three-dimensional (3D) structure and sequence. Sixty-nine of the retinal proteins were obtained from the Uniprot database. Remaining proteins not included in the database were included in the study after they were converted into 3D structures using the RaptorX web tool. Sequence and three-dimensional structure of SARS-COV-2 S, N, M, E, ORF1ab proteins and retinal vascular endothelial proteins were compared with mTM-align server. Proteins with significant similarity (score above 0.5) were validated with the TM-align web server. Immune and thrombosis-related protein-receptor interactions of similar proteins was checked with CABS-dock. We detected a high level of structural similarity between E protein and ACE, ACE2, LAT1, and TM9SF4 endothelial proteins. In addition, PECAM-1 was found to be structurally similar to ORF1ab and S protein. When we evaluated the likelihood/potential to stimulate an immune responses/a cytokine release, TLR-2 and TLR-3, which are highly susceptible to SARS-CoV2, showed a potential receptor-protein interaction with retinal vascular endothelial proteins. Our study demonstrates that SARS-CoV-2 proteins may have structural similarities with vascular endothelial proteins, and therefore, as immunological target sites, the counterpart proteins on the endothelial surface of many organs may also be secondarily affected by any immune response against SARS-CoV-2 structural proteins.
Collapse
Affiliation(s)
- Işıl Kutlutürk
- Division of Ophthalmology, Ümraniye Trn. And Rch. Hospital, Istanbul, Turkey.
| | - Ecem Önder Tokuç
- Ophthalmology Department, University of Health Science, Derince Training and Research Hospital, Izmit-Kocaeli, Turkey
| | - Levent Karabaş
- Ophthalmology Department, Kocaeli University School of Medicine, Izmit-Kocaeli, Turkey
| | | | | | - Ali Karagöz
- Koşuyolu High Specialization Education and Research Hospital, Istanbul, Turkey
| | - Marion R Munk
- Inselspital, University Hospital Bern, Bern, Switzerland
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Augenarzt-Praxisgemeinschaft Gutblick AG, Bern, Switzerland
| |
Collapse
|
5
|
Taş S, Taş Ü. Effects of COVID-19 on the Autonomic Cardiovascular System: Heart Rate Variability and Turbulence in Recovered Patients. Tex Heart Inst J 2023; 50:e227952. [PMID: 37605870 PMCID: PMC10660136 DOI: 10.14503/thij-22-7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND COVID-19 may be a risk factor for developing cardiovascular autonomic dysfunction. Data are limited, however, on the association between heart rate variability, heart rate turbulence, and COVID-19. The aims of this study were to evaluate the effect of COVID-19 on the cardiovascular autonomic system in patients with persistent symptoms after recovering from COVID-19 and to determine whether these patients showed changes in ambulatory electrocardiography monitoring. METHODS Fifty-one adults who had confirmed SARS-CoV-2 infection and presented with persistent symptoms to the cardiology outpatient clinic after clinical recovery between April and June 2021 were included. Patients were prospectively followed for 6 months. The patients were evaluated at the time of first application to the cardiology outpatient clinic and at 6 months after presentation. Ambulatory electrocardiography monitoring and echocardiographic findings were compared with a control group of 95 patients. RESULTS Patients in the post-COVID-19 group had significantly higher mean (SD) turbulence onset (0.39% [1.82%] vs -1.37% [2.93%]; P < .001) and lower heart rate variability than those in the control group at both initial and 6-month evaluations. The post-COVID-19 group had no significant differences in echocardiographic findings compared with the control group at 6 months, except for right ventricle late diastolic mitral annular velocity (P = .034). Furthermore, turbulence onset was significantly correlated with turbulence slope (r = -0.232; P = .004), heart rate variability, and the parameters of left (r = -0.194; P=.049) and right (r = 0.225; P = .02) ventricular diastolic function. CONCLUSIONS COVID-19 may cause cardiovascular autonomic dysfunction. Heart rate variability and turbulence parameters can be used to recognize cardiovascular autonomic dysfunction in patients who have recovered from COVID-19 but have persistent symptoms.
Collapse
Affiliation(s)
- Sedat Taş
- Department of Cardiology, Manisa City Hospital, Manisa, Turkey
| | - Ümmü Taş
- Department of Cardiology, Manisa Merkezefendi State Hospital, Manisa, Turkey
| |
Collapse
|
6
|
Becker RC. Evaluating chest pain in patients with post COVID conditions permission to think outside of the box. J Thromb Thrombolysis 2023; 55:592-603. [PMID: 37052772 PMCID: PMC10098243 DOI: 10.1007/s11239-023-02808-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Chest pain is among the most common symptoms of post-COVID-19 Conditions (PCC) that prompts medical attention. Because the SARS-CoV-2 virus has proclivity for many organs and organ systems in the chest, ranging from the heart, lungs, great vessels, lymphatics, and peripheral nerves, clinicians evaluating patients with chest pain must consider a broad differential diagnosis and take a comprehensive approach to management.
Collapse
|
7
|
Fiorentino G, Benincasa G, Coppola A, Franzese M, Annunziata A, Affinito O, Viglietti M, Napoli C. Targeted genetic analysis unveils novel associations between ACE I/D and APO T158C polymorphisms with D-dimer levels in severe COVID-19 patients with pulmonary embolism. J Thromb Thrombolysis 2023; 55:51-59. [PMID: 36371754 PMCID: PMC9660132 DOI: 10.1007/s11239-022-02728-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/14/2022]
Abstract
Only a percentage of COVID-19 patients develop thrombotic complications. We hypothesized that genetic profiles may explain part of the inter-individual differences. Our goal was to evaluate the genotypic distribution of targeted DNA polymorphisms in COVID-19 patients complicated (PE+) or not (PE-) by pulmonary embolism. We designed a retrospective observational study enrolling N = 94 consecutive patients suffering severe COVID-19 with pulmonary embolism (PE+, N = 47) or not (PE-, N = 47) during hospitalization. A panel of N = 13 prothrombotic DNA polymorphisms (FV R506Q and H1299R, FII G20210A, MTHFR C677T and A1298C, CBS 844ins68, PAI-1 4G/5G, GPIIIa HPA-1 a/b, ACE I/D, AGT T9543C, ATR-1 A1166C, FGB - 455G > A, FXIII103G > T) and N = 2 lipid metabolism-related DNA polymorphisms (APOE T 112C and T158C) were investigated using Reverse Dot Blot technique. Then, we investigated possible associations between genotypic subclasses and demographic, clinical, and laboratory parameters including age, obesity, smoking, pro-inflammatory cytokines, drug therapy, and biomarkers of thrombotic risk such as D-dimer (DD). We found that 58.7% of PE+ had homozygous mutant D/D genotype at ACE I/D locus vs. PE- (40.4%) and 87% of PE+ had homozygous mutant C/C genotype at APOE T158C locus vs. PE- (68.1%). In PE+ group, DD levels were significantly higher in D/D and I/D genotypes at ACE I/D locus (P = 0.00066 and P = 0.00023, respectively) and in C/C and T/C genotypes at APOE T158C locus (P = 1.6e-06 and P = 0.0012, respectively) than PE- group. For the first time, we showed significant associations between higher DD levels and ACE I/D and APOE T158C polymorphisms in PE+ vs. PE- patients suggesting potential useful biomarkers of poor clinical outcome.
Collapse
Affiliation(s)
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Antonietta Coppola
- Department of Intensive Care, A.O.R.N. Ospedali dei Colli, Naples, Italy
| | | | - Anna Annunziata
- Department of Intensive Care, A.O.R.N. Ospedali dei Colli, Naples, Italy
| | | | - Mario Viglietti
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep 2022; 24:1711-1726. [PMID: 36178611 PMCID: PMC9524329 DOI: 10.1007/s11886-022-01786-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus). RECENT FINDINGS These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).
Collapse
Affiliation(s)
- Nicholas L. DePace
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
| | - Joe Colombo
- Franklin Cardiovascular Associates, PA – Autonomic Dysfunction and POTS Center, Sicklerville, NJ USA
- Neuro-Cardiology Research Corporation, LLC, Wilmington, DE USA
- CTO and Sr. Medical Director, Physio PS, Inc, Atlanta, GA USA
| |
Collapse
|
9
|
Mahanta D, Suryawanshi C, Narkhede H. Clinical outcomes of COVID-19 patients after sequential oxygen therapy in Tertiary Medical College. BALI JOURNAL OF ANESTHESIOLOGY 2022. [DOI: 10.4103/bjoa.bjoa_179_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Shou MH, Wang ZX, Lou WQ. Effect evaluation of non-pharmaceutical interventions taken in China to contain the COVID-19 epidemic based on the susceptible-exposed-infected-recovered model. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 2021; 171:120987. [PMID: 34176979 DOI: 10.1016/j.techfore.2021.120986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/16/2021] [Accepted: 06/20/2021] [Indexed: 05/20/2023]
Abstract
This paper takes confirmed cases of COVID-19 from January 20 to March 18, 2020 as the sample set to establish the susceptible-exposed-infected-recovered (SEIR) model. By evaluating effects of different non-pharmaceutical interventions (NPIs), the research expects to provide references to other countries for formulating corresponding policies. This article divides all non-pharmaceutical interventions into three types according to their different roles. The results show that type-A and type-B non-pharmaceutical interventions both can delay the timing of large-scale infections of the susceptible population, timing of the number of exposed individuals to peak, and timing of peaking of the number of infected cases, as well as decrease the peak number of exposed cases. Moreover, type-B non-pharmaceutical interventions have more significant effects on susceptible and exposed populations. Type-C non-pharmaceutical interventions for improving the recovery rate of patients are able to effectively reduce the peak number of patients, greatly decrease the slope of the curve for the number of infected cases, substantially improve the recovery rate, and lower the mortality rate; however, these non-pharmaceutical interventions do not greatly delay the timing of the number of infected cases to peak. And based on the above analysis, we proposed some suggestions.
Collapse
Affiliation(s)
- Ming-Huan Shou
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
- Business School, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zheng-Xin Wang
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Wen-Qian Lou
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
- School of Economics and Management, Southeast University, Nanjing 211189, China
| |
Collapse
|
11
|
Shou MH, Wang ZX, Lou WQ. Effect evaluation of non-pharmaceutical interventions taken in China to contain the COVID-19 epidemic based on the susceptible-exposed-infected-recovered model. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 2021; 171:120987. [PMID: 34176979 PMCID: PMC8220917 DOI: 10.1016/j.techfore.2021.120987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/16/2021] [Accepted: 06/20/2021] [Indexed: 05/06/2023]
Abstract
This paper takes confirmed cases of COVID-19 from January 20 to March 18, 2020 as the sample set to establish the susceptible-exposed-infected-recovered (SEIR) model. By evaluating effects of different non-pharmaceutical interventions (NPIs), the research expects to provide references to other countries for formulating corresponding policies. This article divides all non-pharmaceutical interventions into three types according to their different roles. The results show that type-A and type-B non-pharmaceutical interventions both can delay the timing of large-scale infections of the susceptible population, timing of the number of exposed individuals to peak, and timing of peaking of the number of infected cases, as well as decrease the peak number of exposed cases. Moreover, type-B non-pharmaceutical interventions have more significant effects on susceptible and exposed populations. Type-C non-pharmaceutical interventions for improving the recovery rate of patients are able to effectively reduce the peak number of patients, greatly decrease the slope of the curve for the number of infected cases, substantially improve the recovery rate, and lower the mortality rate; however, these non-pharmaceutical interventions do not greatly delay the timing of the number of infected cases to peak. And based on the above analysis, we proposed some suggestions.
Collapse
Affiliation(s)
- Ming-Huan Shou
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
- Business School, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zheng-Xin Wang
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Wen-Qian Lou
- School of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
- School of Economics and Management, Southeast University, Nanjing 211189, China
| |
Collapse
|
12
|
Tomerak S, Khan S, Almasri M, Hussein R, Abdelati A, Aly A, Salameh MA, Saed Aldien A, Naveed H, Elshazly MB, Zakaria D. Systemic inflammation in COVID‐19 patients may induce various types of venous and arterial thrombosis: A systematic review. Scand J Immunol 2021; 94:e13097. [PMID: 34940978 PMCID: PMC8646950 DOI: 10.1111/sji.13097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
COVID‐19 is a global pandemic with a daily increasing number of affected individuals. Thrombosis is a severe complication of COVID‐19 that leads to a worse clinical course with higher rates of mortality. Multiple lines of evidence suggest that hyperinflammation plays a crucial role in disease progression. This review compiles clinical data of COVID‐19 patients who developed thrombotic complications to investigate the possible role of hyperinflammation in inducing hypercoagulation. A systematic literature search was performed using PubMed, Embase, Medline and Scopus to identify relevant clinical studies that investigated thrombotic manifestations and reported inflammatory and coagulation biomarkers in COVID‐19 patients. Only 54 studies met our inclusion criteria, the majority of which demonstrated significantly elevated inflammatory markers. In the cohort studies with control, D‐dimer was significantly higher in COVID‐19 patients with thrombosis as compared to the control. Pulmonary embolism, deep vein thrombosis and strokes were frequently reported which could be attributed to the hyperinflammatory response associated with COVID‐19 and/or to the direct viral activation of platelets and endothelial cells, two mechanisms that are discussed in this review. It is recommended that all admitted COVID‐19 patients should be assessed for hypercoagulation. Furthermore, several studies have suggested that anticoagulation may be beneficial, especially in hospitalized non‐ICU patients. Although vaccines against SARS‐CoV‐2 have been approved and distributed in several countries, research should continue in the field of prevention and treatment of COVID‐19 and its severe complications including thrombosis due to the emergence of new variants against which the efficacy of the vaccines is not yet clear.
Collapse
Affiliation(s)
- Sara Tomerak
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | - Safah Khan
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | - Muna Almasri
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | - Rawan Hussein
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | - Ali Abdelati
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | - Ahmed Aly
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | | | | | - Hiba Naveed
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| | | | - Dalia Zakaria
- Weill Cornell Medicine QatarQatar Foundation Doha Qatar
| |
Collapse
|
13
|
Deng H, Tang TX, Chen D, Tang LS, Yang XP, Tang ZH. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050582. [PMID: 34064553 PMCID: PMC8151812 DOI: 10.3390/pathogens10050582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has been recently considered a systemic disorder leading to the procoagulant state. Preliminary studies have shown that SARS-CoV-2 can infect endothelial cells, and extensive evidence of inflammation and endothelial dysfunction has been found in advanced COVID-19. Endothelial cells play a critical role in many physiological processes, such as controlling blood fluidity, leukocyte activation, adhesion, platelet adhesion and aggregation, and transmigration. Therefore, it is reasonable to think that endothelial dysfunction leads to vascular dysfunction, immune thrombosis, and inflammation associated with COVID-19. This article summarizes the association of endothelial dysfunction and SARS-CoV-2 infection and its therapeutic strategies.
Collapse
Affiliation(s)
- Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China;
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Liang-Sheng Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
- Correspondence:
| |
Collapse
|
14
|
Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview. Diabetes Metab Syndr 2021; 15:869-875. [PMID: 33892403 PMCID: PMC8056514 DOI: 10.1016/j.dsx.2021.04.007] [Citation(s) in RCA: 533] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Long COVID is the collective term to denote persistence of symptoms in those who have recovered from SARS-CoV-2 infection. METHODS WE searched the pubmed and scopus databases for original articles and reviews. Based on the search result, in this review article we are analyzing various aspects of Long COVID. RESULTS Fatigue, cough, chest tightness, breathlessness, palpitations, myalgia and difficulty to focus are symptoms reported in long COVID. It could be related to organ damage, post viral syndrome, post-critical care syndrome and others. Clinical evaluation should focus on identifying the pathophysiology, followed by appropriate remedial measures. In people with symptoms suggestive of long COVID but without known history of previous SARS-CoV-2 infection, serology may help confirm the diagnosis. CONCLUSIONS This review will helps the clinicians to manage various aspects of Long COVID.
Collapse
Affiliation(s)
- A V Raveendran
- Govt. Medical College, Manjeri,Kottayam, Kozhikode, Kerala, India; Specialist in Internal Medicine, Badr Al Samaa, Barka, Oman.
| | | | | |
Collapse
|
15
|
An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian J Clin Biochem 2021; 36:387-403. [PMID: 33875909 PMCID: PMC8047580 DOI: 10.1007/s12291-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease which has affected more than 6.2 million people globally, with numbers mounting considerably daily. However, till date, no specific treatment modalities are available for Covid-19 and also not much information is known about this disease. Recent studies have revealed that SARS-CoV-2 infection is associated with the generation of thrombosis and coagulopathy. Fundamentally, it has been believed that a diverse array of signalling pathways might be responsible for the activation of coagulation cascade during SARS-CoV-2 infection. Henceforth, a detailed understanding of these probable underlying molecular mechanistic pathways causing thrombosis in Covid-19 disease deserves an urgent exploration. Therefore, in this review, the hypothetical crosstalk between distinct signalling pathways including apoptosis, inflammation, hypoxia and angiogenesis attributable for the commencement of thrombotic events during SARS-CoV-2 infection has been addressed which might further unravel promising therapeutic targets in Covid-19 disease.
Collapse
|
16
|
|
17
|
Canedo-Marroquín G, Saavedra F, Andrade CA, Berrios RV, Rodríguez-Guilarte L, Opazo MC, Riedel CA, Kalergis AM. SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Front Immunol 2020; 11:569760. [PMID: 33362758 PMCID: PMC7759609 DOI: 10.3389/fimmu.2020.569760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization (WHO) announced in March a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This new infectious disease was named Coronavirus Disease 19 (COVID-19), and at October 2020, more than 39,000,000 cases of SARS-CoV-2 have been detected worldwide leading to near 1,100,000 deaths. Clinically, COVID-19 is characterized by clinical manifestations, such as fever, dry cough, headache, and in more severe cases, respiratory distress. Moreover, neurological-, cardiac-, and renal-related symptoms have also been described. Clinical evidence suggests that migration of immune cells to the affected organs can produce an exacerbated release of proinflammatory mediators that contribute to disease and render the immune response as a major player during the development of the COVID-19 disease. Due to the current sanitary situation, the development of vaccines is imperative. Up to the date, 42 prototypes are being tested in humans in different clinical stages, with 10 vaccine candidates undergoing evaluation in phase III clinical trials. In the same way, the search for an effective treatment to approach the most severe cases is also in constant advancement. Several potential therapies have been tested since COVID-19 was described, including antivirals, antiparasitic and immune modulators. Recently, clinical trials with hydroxychloroquine-a promising drug in the beginning-were suspended. In addition, the Food and Drug Administration (FDA) approved convalescent serum administration as a treatment for SARS-CoV-2 patients. Moreover, monoclonal antibody therapy is also under development to neutralize the virus and prevent infection. In this article, we describe the clinical manifestations and the immunological information available about COVID-19 disease. Furthermore, we discuss current therapies under study and the development of vaccines to prevent this disease.
Collapse
Affiliation(s)
- Gisela Canedo-Marroquín
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Farides Saavedra
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berrios
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Affiliation(s)
- Richard C Becker
- Department of Medicine, University of Cincinnati Heart and Circulation Research Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
19
|
Azizi SA, Azizi SA. Neurological injuries in COVID-19 patients: direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. J Neurovirol 2020; 26:631-641. [PMID: 32876900 PMCID: PMC7465881 DOI: 10.1007/s13365-020-00903-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
A subset of patients with coronavirus 2 disease (COVID-19) experience neurological complications. These complications include loss of sense of taste and smell, stroke, delirium, and neuromuscular signs and symptoms. The etiological agent of COVID-19 is SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), an RNA virus with a glycoprotein-studded viral envelope that uses ACE2 (angiotensin-converting enzyme 2) as a functional receptor for infecting the host cells. Thus, the interaction of the envelope spike proteins with ACE2 on host cells determines the tropism and virulence of SARS-CoV-2. Loss of sense of taste and smell is an initial symptom of COVID-19 because the virus enters the nasal and oral cavities first and the epithelial cells are the receptors for these senses. Stroke in COVID-19 patients is likely a consequence of coagulopathy and injury to cerebral vascular endothelial cells that cause thrombo-embolism and stroke. Delirium and encephalopathy in acute and post COVID-19 patients are likely multifactorial and secondary to hypoxia, metabolic abnormalities, and immunological abnormalities. Thus far, there is no clear evidence that coronaviruses cause inflammatory neuromuscular diseases via direct invasion of peripheral nerves or muscles or via molecular mimicry. It appears that most of neurologic complications in COVID-19 patients are indirect and as a result of a bystander injury to neurons.
Collapse
Affiliation(s)
- Sayed Ausim Azizi
- Global Neuroscience Institute, 1 Medical Center Blvd., Chester, PA, 19013, USA.
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
20
|
Blum K, Downs BW, Bagchi M, Kushner S, Morrison BS, Galvin J, Randsdorp K, Randsdorp J, Badgaiyan RD, Braverman ER, Bagchi D. Induction of homeostatic biological parameters in reward deficiency as a function of an iron-free multi-nutrient complex: Promoting hemoglobinization, aerobic metabolism, viral immuno-competence, and neuroinflammatory regulation. JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2020; 7:10.15761/JSIN.1000234. [PMID: 35096420 PMCID: PMC8793786 DOI: 10.15761/jsin.1000234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND A common neurological condition worldwide is Reward Deficiency Syndrome (RDS) leading to both substance and non-substance addictive behaviors, that must be combatted by integrating both central nervous system and peripheral nervous system biological approaches. Integrity of hemoglobin is a crucial determining factor for the overall health functions. Nutrient repletion therapy should be a fundamental strategy to restore the healthy properties of blood. A unique patent-pending iron-free VMP35 formulation was engineered by our laboratory to restore iron-dependent hemoglobin in anemic cells using a proprietary Prodosome® absorption technology. This formulation, containing an array of nano-emulsified botanical ingredients rich in bioflavonoids, strengthens the structural integrity of connective tissues, and potentiates immune competence, cellular aerobic metabolism, and enhances efficient regulation of inflammatory events. We discuss the intricate aspects of strong vs. fragile immunity and consequential inflammatory responses to convey a deeper understanding of the varied and overly complex sequela of immunological behaviors and events. The effect of the VMP35 is mediated through highly absorbable nutritional/nutrigenomic repletion enabling improvements in the systemic set of functional behaviors. In fact, the iron-free VMP35 facilitates a "Systems Biology Approach" which restores hemoglobin status, reverses anaerobic hypoxia, improves competent immune responsivity, and regulates appropriate and controlled activation of general and neuro-inflammatory sequela. Under these pathogenic circumstances, iron-deficiency anemia has been misconceptualized, and a new nosological term, Chronic Anemia Syndrome, is proposed. The comparative therapeutic rationale of Reductionist vs. Systems Biology approaches is also explained in detail. METHODS The efficacy of the novel therapeutic iron-free VMP35 liquid nutraceutical is detailed in restoring iron-dependent hemoglobin to RBCs and boosting cellular morphology, viability, and immune competence, thereby reducing the need for prolonging inflammatory sequela. RESULTS This was demonstrated in a previous IRB approved multi-subject human study. In addition, two recent case studies report dramatic restorative benefits of nutrient repletion therapy of the VMP35 on subjects having experienced near-fatal events, which confirmed the findings explained in this manuscript. CONCLUSIONS This novel iron-free VMP35 modulates an array of homeostatic biological parameters such as enhanced hemoglobinization, aerobic metabolism, viral immuno-competence, and inflammatory regulation. Further research, examining mechanistic and beneficial effects in athletic performance, is in progress. Importantly, during these troubled immune challenging times, modulating an array of homeostatic immunological and inflammatory dysfunctions are tantamount to improved population outcomes. TRIAL REGISTRATION The Clinical investigation in a total of 38 subjects was conducted under an Institutional Review Board (IRB) from the Path Foundation in New York, NY (#13-009 April 25, 2013). The two case studies were done at Lancaster General Hospital, Lancaster, PA, and Jefferson University Hospital, Philadelphia, PA, USA. Both studies were retrospectively registered.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University, Health Sciences, Pomona, CA, USA
| | - Bernard W Downs
- Victory Nutrition International, Inc., Department of R&D, Lederach, PA USA
| | | | | | | | - Jeffrey Galvin
- Vitality Medical Wellness Institute, PLLC, Charlotte, NC USA
| | | | | | - Rajendra D Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA
- Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | | | - Debasis Bagchi
- Victory Nutrition International, Inc., Department of R&D, Lederach, PA USA
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston college of Pharmacy, Houston, TX, USA
| |
Collapse
|
21
|
|