1
|
Sciarra F, Franceschini E, Palmieri G, Venneri MA. Complex gene-dependent and-independent mechanisms control daily rhythms of hematopoietic cells. Biomed Pharmacother 2025; 183:117803. [PMID: 39753096 DOI: 10.1016/j.biopha.2024.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored. Studies on anucleate hematopoietic components, such as red blood cells and platelets, have shown that auto-sustained redox reaction cycles persist and operate in mammals. This opens to the possibility that transcriptional and non-transcriptional circadian mechanisms might coexist in nucleated immune cell populations, potentially complementing each other. It is becoming increasingly clear that disruption of the circadian rhythm at the central level (core clock) is strongly implicated in a plethora of diseases that are associated with maladaptive immune responses. On the other hand, several evidence imply that dysregulated immune activity (e.g. excessive inflammation) may alter/disrupt the proper functioning of peripheral clocks. This knowledge paves the way to the exploitation of chronobiological concepts in clinical practice. A better comprehension of various transcriptional/translational and biochemical mechanisms that maintain rhythmicity in immune system activities, as well as the many factors (host-derived, microbiota-derived, environment) that can alter or disrupt these processes, will facilitate the development of novel chrono-immunotherapeutic approaches.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|
2
|
Eleonora S, Sergio T, Maria PF. Cilostazol in Patients With High Residual Platelet Reactivity After Drug-Eluting Stent Implantation. Am J Ther 2024; 31:e322-e324. [PMID: 38300762 DOI: 10.1097/mjt.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Schiera Eleonora
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|
3
|
Sohn M, Lim S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int J Mol Sci 2024; 25:2593. [PMID: 38473840 DOI: 10.3390/ijms25052593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading global cause of mortality. Addressing this vital and pervasive condition requires a multifaceted approach, in which antiplatelet intervention plays a pivotal role, together with antihypertensive, antidiabetic, and lipid-lowering therapies. Among the antiplatelet agents available currently, cilostazol, a phosphodiesterase-3 inhibitor, offers a spectrum of pharmacological effects. These encompass vasodilation, the impediment of platelet activation and aggregation, thrombosis inhibition, limb blood flow augmentation, lipid profile enhancement through triglyceride reduction and high-density lipoprotein cholesterol elevation, and the suppression of vascular smooth muscle cell proliferation. However, the role of cilostazol has not been clearly documented in many guidelines for ASCVD. We comprehensively reviewed the cardiovascular effects of cilostazol within randomized clinical trials that compared it to control or active agents and involved individuals with previous coronary artery disease or stroke, as well as those with no previous history of such conditions. Our approach demonstrated that the administration of cilostazol effectively reduced adverse cardiovascular events, although there was less evidence regarding its impact on myocardial infarction. Most studies have consistently reported its favorable effects in reducing intermittent claudication and enhancing ambulatory capacity in patients with peripheral arterial disease. Furthermore, cilostazol has shown promise in mitigating restenosis following coronary stent implantation in patients with acute coronary syndrome. While research from more diverse regions is still needed, our findings shed light on the broader implications of cilostazol in the context of atherosclerosis and vascular biology, particularly for individuals at high risk of ASCVD.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| |
Collapse
|
4
|
Ranjit S, Wang Y, Zhu J, Cheepala SB, Schuetz EG, Cho WJ, Xu B, Robinson CG, Wu G, Naren AP, Schuetz JD. ABCC4 impacts megakaryopoiesis and protects megakaryocytes against 6-mercaptopurine induced cytotoxicity. Drug Resist Updat 2024; 72:101017. [PMID: 37988981 PMCID: PMC10874622 DOI: 10.1016/j.drup.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.
Collapse
Affiliation(s)
- Sabina Ranjit
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Yao Wang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Jingwen Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Satish B Cheepala
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Erin G Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St Jude Children's Research Hospital, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | | | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA.
| |
Collapse
|
5
|
Sahinturk S. Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat 2023; 169:106782. [PMID: 37741358 DOI: 10.1016/j.prostaglandins.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE This study aimed to investigate vasoactive effect mechanisms of cilostazol in rat thoracic aorta. MATERIALS AND METHODS The vessel rings prepared from the thoracic aortas of the male rats were placed in the chambers of the isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration phase, potassium chloride or phenylephrine was used to contract the vessel rings. When achieving a steady contraction, cilostazol was applied cumulatively (10-8-10-4 M). In the presence of potassium channel blockers or signaling pathway inhibitors, the same experimental procedure was performed. RESULTS Cilostazol exhibited a significant vasorelaxant effect in a concentration-dependent manner (pD2: 5.94 ± 0.94) (p < .001). The vasorelaxant effect level of cilostazol was significantly reduced by the endothelial nitric oxide synthase inhibitor L-NAME (10-4 M), soluble guanylate cyclase inhibitor methylene blue (10 µM), cyclooxygenase 1/2 inhibitor indomethacin (5 µM), adenosine monophosphate-activated protein kinase inhibitor compound C (10 µM), non-selective potassium channel blocker tetraethylammonium chloride (10 mM), large-conductance calcium-activated potassium channel blocker iberiotoxin (20 nM), voltage-gated potassium channel blocker 4-Aminopyridine (1 mM), and inward-rectifier potassium channel blocker BaCl2 (30 µM) (p < .001). Moreover, incubation of cilostazol (10-4 M) significantly reduced caffeine (10 mM), cyclopiazonic acid (10 µM), and phorbol 12-myristate 13-acetate-induced (100 µM) vascular contractions (p < .001). CONCLUSIONS In the rat thoracic aorta, the vasodilator action level of cilostazol is quite noticeable. The vasorelaxant effects of cilostazol are mediated by the eNOS/NO/cGMP pathway, prostanoids, AMPK pathway, PKC, potassium channels, and calcium channels.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Bursa Uludag University Medicine School, Physiology Department, 16059, Bursa, Turkey.
| |
Collapse
|
6
|
Leonardi GR, Lescano CH, Costa JL, Mazetto B, Orsi FA, Monica FZ. Adenosine diphosphate-induced aggregation is enhanced in platelets obtained from patients with thrombotic primary antiphospholipid syndrome (t-PAPS): Role of P2Y 12 -cAMP signaling pathway. J Thromb Haemost 2022; 20:1699-1711. [PMID: 35395698 DOI: 10.1111/jth.15724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Thrombotic antiphospholipid syndrome (t-PAPS) is characterized by arterial, venous, or microvascular occlusions, which are explained, in part, by the presence of antiphospholipid (aPL) antibodies. Although there is much evidence indicating that isolated aPL antibodies increase the activity of platelets obtained from healthy volunteers, platelet function in t-PAPS has not been as widely studied. OBJECTIVE To evaluate platelet reactivity in t-PAPS patients. METHODS Platelet aggregation, protein expression, and cyclic nucleotide levels were carried out in platelet rich plasma (PRP) or washed platelets (WPs) obtained from t-PAPS or healthy volunteers. RESULTS ADP-induced aggregation was significantly higher in PRP obtained from t-PAPS than obtained from the control. The protein expression of P2Y12 receptor and Gs alpha was significantly higher and lower, respectively in WPs from t-PAPS patients. In PRP incubated with iloprost or sodium nitroprusside, the residual platelet reactivity induced by ADP was still higher in PRP from t-PAPS than from the control. Lower intracellular levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) were observed in unstimulated PRP from t-PAPS patients. The protein expression of soluble guanylate cyclase subunits and phosphodiesterases types 3 and 5 did not differ. The antiplatelet activity of ticagrelor was similar between the groups and cilostazol significantly potentiated this response. Isolated aPL antibodies obtained from t-PAPS patients potentiated ADP-induced aggregation in healthy platelets but did not affect the inhibitory responses induced by iloprost or sodium nitroprusside. CONCLUSIONS The overexpression of P2Y12 receptor, accompanied by lower levels of cAMP and cGMP levels produced greater amplitude of ADP aggregation in platelets from t-PAPS patients.
Collapse
Affiliation(s)
- Guilherme Ruiz Leonardi
- Department of Translation Medicine (Pharmacology), Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Caroline Honaiser Lescano
- Department of Translation Medicine (Pharmacology), Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Jose Luiz Costa
- Campinas Poison Control Center, University of Campinas, Campinas, Brazil
| | - Bruna Mazetto
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Fernanda Andrade Orsi
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Translation Medicine (Pharmacology), Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Angelis I, Moussis V, Tsoukatos DC, Tsikaris V. Multidrug Resistance Protein 4 (MRP4/ABCC4): A Suspected Efflux Transporter for Human's Platelet Activation. Protein Pept Lett 2021; 28:983-995. [PMID: 33964863 DOI: 10.2174/0929866528666210505120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
The main role of platelets is to contribute to hemostasis. However, under pathophysiological conditions, platelet activation may lead to thrombotic events of cardiovascular diseases. Thus, anti-thrombotic treatment is important in patients with cardiovascular disease. This review focuses on a platelet receptor, a transmembrane protein, the Multidrug Resistance Protein 4, MRP4, which contributes to platelet activation by extruding endogenous molecules responsible for their activation and accumulation. The regulation of the intracellular concentration levels of these molecules by MRP4 turned to make the protein suspicious and, at the same time, an interesting regulatory factor of normal platelet function. Especially, the possible role of MRP4 in the excretion of xenobiotic and antiplatelet drugs such as aspirin is discussed, thus imparting platelet aspirin tolerance and correlating the protein with the ineffectiveness of aspirin antiplatelet therapy. Based on the above, this review finally underlines that the development of a highly selective and targeted strategy for platelet MRP4 inhibition will also lead to inhibition of platelet activation and accumulation.
Collapse
Affiliation(s)
- Ioannis Angelis
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Vassilios Moussis
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Demokritos C Tsoukatos
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| | - Vassilios Tsikaris
- Department of Chemistry, Organic Chemistry & Biochemistry, University of Ioannina, Ioannina. Greece
| |
Collapse
|
8
|
Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: a Review of Basic Mechanisms and Clinical Uses. Cardiovasc Drugs Ther 2021; 36:777-792. [PMID: 33860901 DOI: 10.1007/s10557-021-07187-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Primarily used in the treatment of intermittent claudication, cilostazol is a 2-oxyquinolone derivative that works through the inhibition of phosphodiesterase III and related increases in cyclic adenosine monophosphate (cAMP) levels. However, cilostazol has been implicated in a number of other basic pathways including the inhibition of adenosine reuptake, the inhibition of multidrug resistance protein 4, among others. It has been observed to exhibit antiplatelet, antiproliferative, vasodilatory, and ischemic-reperfusion protective properties. As such, cilostazol has been investigated for clinical use in a variety of settings including intermittent claudication, as an adjunctive for reduction of restenosis after coronary and peripheral endovascular interventions, and in the prevention of secondary stroke, although its widespread implementation for indications other than intermittent claudication has been limited by relatively modest effect sizes and lack of studies in western populations. In this review, we highlight the pleiotropic effects of cilostazol and the evidence for its clinical use.
Collapse
Affiliation(s)
- Riyad Y Kherallah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Muzamil Khawaja
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Olson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX, USA.
| |
Collapse
|