1
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
2
|
Stamoula E, Sarantidi E, Dimakopoulos V, Ainatzoglou A, Dardalas I, Papazisis G, Kontopoulou K, Anagnostopoulos AK. Serum Proteome Signatures of Anti-SARS-CoV-2 Vaccinated Healthcare Workers in Greece Associated with Their Prior Infection Status. Int J Mol Sci 2022; 23:ijms231710153. [PMID: 36077551 PMCID: PMC9456361 DOI: 10.3390/ijms231710153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Over the course of the pandemic, proteomics, being in the frontline of anti-COVID-19 research, has massively contributed to the investigation of molecular pathogenic properties of the virus. However, data on the proteome on anti-SARS-CoV-2 vaccinated individuals remain scarce. This study aimed to identify the serum proteome characteristics of anti-SARS-CoV-2 vaccinated individuals who had previously contracted the virus and comparatively assess them against those of virus-naïve vaccine recipients. Blood samples of n = 252 individuals, out of whom n = 35 had been previously infected, were collected in the "G. Gennimatas" General Hospital of Thessaloniki, from 4 January 2021 to 31 August 2021. All participants received the BNT162b2 mRNA COVID-19 vaccine (Pfizer/BioNTech). A label-free quantitative proteomics LC-MS/MS approach was undertaken, and the identified proteins were analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes) databases as well as processed by bioinformatics tools. Titers of total RBD-specific IgGs against SARS-CoV-2 were also determined using the SARS-CoV-2 IgG II Quant assay. A total of 47 proteins were significantly differentially expressed, the majority of which were down-regulated in sera of previously infected patients compared to virus-naïve controls. Several pathways were affected supporting the crucial role of the humoral immune response in the protection against SARS-CoV-2 infection provided by COVID-19 vaccination. Overall, our comprehensive proteome profiling analysis contributes novel knowledge of the mechanisms of immune response induced by anti-SARS-CoV-2 vaccination and identified protein signatures reflecting the immune status of vaccine recipients.
Collapse
Affiliation(s)
- Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleana Sarantidi
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasilis Dimakopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Ainatzoglou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Athanasios K. Anagnostopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
3
|
Abstract
The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.
Collapse
Affiliation(s)
- Denisa D Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital/Harvard Medical School, MA (D.D.W., L.A.H.)
| | - Lukas A Heger
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital/Harvard Medical School, MA (D.D.W., L.A.H.)
| |
Collapse
|
4
|
Kowalska D, Kuźniewska A, Senent Y, Tavira B, Inogés S, López-Díaz de Cerio A, Pio R, Okrój M, Yuste JR. C5a elevation in convalescents from severe COVID-19 is not associated with early complement activation markers C3bBbP or C4d. Front Immunol 2022; 13:946522. [PMID: 36091057 PMCID: PMC9448977 DOI: 10.3389/fimmu.2022.946522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous publications have underlined the link between complement C5a and the clinical course of COVID-19. We previously reported that levels of C5a remain high in the group of severely ill patients up to 90 days after hospital discharge. We have now evaluated which complement pathway fuels the elevated levels of C5a during hospitalization and follow-up. The alternative pathway (AP) activation marker C3bBbP and the soluble fraction of C4d, a footprint of the classical/lectin (CP/LP) pathway, were assessed by immunoenzymatic assay in a total of 188 serial samples from 49 patients infected with SARS-CoV-2. Unlike C5a, neither C3bBbP nor C4d readouts rose proportionally to the severity of the disease. Detailed correlation analyses in hospitalization and follow-up samples collected from patients of different disease severity showed significant positive correlations of AP and CP/LP markers with C5a in certain groups, except for the follow-up samples of the patients who suffered from highly severe COVID-19 and presented the highest C5a readouts. In conclusion, there is not a clear link between persistently high levels of C5a after hospital discharge and markers of upstream complement activation, suggesting the existence of a non-canonical source of C5a in patients with a severe course of COVID-19.
Collapse
Affiliation(s)
- Daria Kowalska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Yaiza Senent
- Program in Solid Tumors, Translational Oncology Group, Cima-University of Navarra and Cancer Center University of Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Department of Oncology and Hematology, Navarra Institute for Health Research (IdISNA), Pamplona, Spain
| | - Beatriz Tavira
- Program in Solid Tumors, Translational Oncology Group, Cima-University of Navarra and Cancer Center University of Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Susana Inogés
- Department of Oncology and Hematology, Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra, Pamplona, Spain
- Area of Cell Therapy and Department of Hematology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascensión López-Díaz de Cerio
- Department of Oncology and Hematology, Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra, Pamplona, Spain
- Area of Cell Therapy and Department of Hematology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, Translational Oncology Group, Cima-University of Navarra and Cancer Center University of Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Department of Oncology and Hematology, Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Program in Respiratory Tract Tumors, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Marcin Okrój,
| | - José Ramón Yuste
- Department of Oncology and Hematology, Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Department of Internal Medicine, Clinica Universidad de Navarra, Pamplona, Spain
- Division of Infectious Diseases, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|