1
|
A Study on Darcy versus Forchheimer Models for Flow through Heterogeneous Landfills Including Macropores. WATER 2022. [DOI: 10.3390/w14040546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flow through heterogeneous landfills that include macropores may occur under Reynolds numbers higher than those where Darcy’s law is valid. Extensions, such as a Forchheimer approach, may be required to include inertial effects. Our aim is developing predictive models for such landfills that are built from the low-level radioactive waste and debris of dismantled nuclear power plants. It consists of different materials, which after crushing result in a spatially heterogeneous distribution of porous-media properties in the landfills. Rain events or leakage, for example, may wash out radionuclides and transport them with the water flow. We investigate here the water flow and consider an inclusion of macropores. To deal with possibly high velocities, we choose the Forchheimer model and, taking different Forchheimer coefficients into account, compare it to the Darcy model. The focal points of the study are (i) the influence of the macropores on the flow field and (ii) the impact of the choice of the Forchheimer coefficient both on the solution and the computational effort. The results show that dependent on their size, macropores can dominate the flow field. Furthermore, Forchheimer coefficients introducing more inertial effects are associated with considerably higher runtimes.
Collapse
|
2
|
Detection of Preferential Water Flow by Electrical Resistivity Tomography and Self-Potential Method. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study explores the hydrogeological conditions of a landslide-prone hillslope in the Upper Mosel valley, Luxembourg. The investigation program included the monitoring of piezometer wells, hydrogeological field tests, analysis of drillcore records, and geophysical surveys. Monitoring and field testing in some of the observation wells indicated very pronounced preferential flow. Electrical resistivity tomography (ERT) and self-potential geophysical methods were employed in the study area for exploration of the morphology of preferential flowpaths. Possible signals associated with flowing groundwater in the subsurface were detected; however, they were diffusively spread over a relatively large zone, which did not allow for the determination of an exact morphology of the conduit. Analysis of drillcore records indicated that flowpaths are caused by the dissolution of thin gypsum interlayers in marls. For better understanding of the site’s hydrogeological settings, a 3D hydrogeological model was compiled. By applying different subsurface flow mechanisms, a hydrogeological model with thin, laterally extending flowpaths embedded in a porous media matrix showed the best correspondence with field observations. Simulated groundwater heads in a preferential flow conduit exactly corresponded with the observed heads in the piezometer wells. This study illustrates how hydrogeological monitoring and geophysical surveys in conjunction with the newest hydrogeological models allow for better conceptualization and parametrization of preferential flow.
Collapse
|
3
|
A New Experimental Method to Determine the Evaporation Coefficient of Trichloroethylene (TCE) in an Arid Soil. Transp Porous Media 2014. [DOI: 10.1007/s11242-014-0404-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Lowrey JD, Osborne AG, Biegalski SR, Deinert MR. Comparison of Numerically Stable Methods for Implementation of a Double Porosity Model with First-Order Reaction Terms. Transp Porous Media 2014. [DOI: 10.1007/s11242-014-0389-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|