1
|
Mello-Andrade F, Guedes APM, Pires WC, Velozo-Sá VS, Delmond KA, Mendes D, Molina MS, Matuda L, de Sousa MAM, Melo-Reis P, Gomes CC, Castro CH, Almeida MAP, Menck CFM, Batista AA, Burikhanov R, Rangnekar VM, Silveira-Lacerda E. Ru(II)/amino acid complexes inhibit the progression of breast cancer cells through multiple mechanism-induced apoptosis. J Inorg Biochem 2021; 226:111625. [PMID: 34655962 DOI: 10.1016/j.jinorgbio.2021.111625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.
Collapse
Affiliation(s)
- Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil; Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás 74055-110, Brazil.
| | - Adriana P M Guedes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Wanessa C Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Vivianne S Velozo-Sá
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Kezia A Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Davi Mendes
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Matheus S Molina
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Larissa Matuda
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | | | - Paulo Melo-Reis
- Departament of Biomedicine, Pontifical Catholic University of Goiás, Goiânia, GO, Brazil
| | - Clever C Gomes
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
| | - Carlos Henrique Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | - Márcio Aurélio P Almeida
- Coordination of Science and Technology, Federal University of Maranhão, São Luís, MA 65080-805, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America
| | - Vivek M Rangnekar
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America; L. P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States of America
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
2
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
3
|
Teixeira TM, Arraes IG, Abreu DC, Oliveira KM, Correa RS, Batista AA, Braunbeck T, de Paula Silveira Lacerda E. Ruthenium complexes show promise when submitted to toxicological safety tests using alternative methodologies. Eur J Med Chem 2021; 216:113262. [PMID: 33711764 DOI: 10.1016/j.ejmech.2021.113262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
The number of cancer cases continues to increase worldwide, and unfortunately the main systemic treatments available have numerous of side effects. Ruthenium complexes have shown to be promising chemotherapeutic agents, since they present low toxicity and are more selective for tumor tissues. We report the synthesis, characterization and biological properties of two new ruthenium (II) complexes containing Lapachol and Lawsone as ligands: (1) [Ru(Law)(dppb)(phen)]PF6 and (2) [Ru(Lap)(dppb)(phen)]PF6, where Law = Lawsone, Lap = Lapachol, dppb = 1,4-bis(diphenylphosphine)butane and phen = 1,10-phenanthroline. The ability of the complexes (1) and (2) to interact with CT-DNA (Calf Thymus) was investigated, and the results indicate that the complexes have shown a weak interaction with this macromolecule. Complexes (1) and (2) showed a moderate interaction with BSA, via a spontaneous process with the involvement of van der Waals and hydrogen bond interactions. Both complexes were tested against human lung cancer cell lines, chronic human myeloid leukemia, murine melanoma and human cervical and non-tumoral murine fibroblast adenocarcinoma, human lung fibroblasts and monkey kidney epithelia. The potential for cytotoxicity was tested out using the MTT assay and the neutral red test, to calculate inhibitory concentrations (IC50) and selectivity indices (IS). Both complexes showed a higher selectivity index of 1.17 and 10.91, respectively, for the HeLa tumor line. Studies of toxicological evaluation, using the micronucleus test and the comet assay against non-tumor cells, as well as an assessment of the potential for acute toxicity and neurotoxicity in zebrafish (Danio rerio). In the in vitro micronucleus test, complex (1) showed the least genotoxic potential, and in the in vitro comet assay both compounds had revealed a genotoxic potential at 0.5 and 1.0 mg L-1, with no difference between 24 h and 48 h exposure times. In the acute toxicity tests on zebrafish embryos, complex (1) showed sublethal effects such as decreased blood circulation and heartbeat rate, which were less pronounced than with complex (2). In contrast to complex 2, which caused lethality even before 48h, complex (1) did not cause the death of the embryos at concentrations up to (2.0 mg L-1). Complex (2) also lead to a delay in the embryo. Cell based in vitro methods thus proved able to provide specific toxicological data, allowing a significant reduction in ∖animal experimentation. Given that in vitro tests cannot completely replace animal tests, the use of less advanced developmental stages such as zebrafish embryos, which - at least in the European Union - are not regarded protected, could be shown to be an excellent alternative for testing with, e.g., mammals.
Collapse
Affiliation(s)
- Thallita Monteiro Teixeira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), CEP 74045-155, Goiânia, GO, Brazil; Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, D-69117, Heidelberg, Germany.
| | - Isabela Gasparini Arraes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), CEP 74045-155, Goiânia, GO, Brazil
| | - Davi Carvalho Abreu
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), CEP 74045-155, Goiânia, GO, Brazil
| | - Katia M Oliveira
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), CP 676, CEP 13565-905, São Carlos, SP, Brazil; Departamento de Química, ICEB, Universidade Federal de Ouro Preto (UFOP), CEP 35400-000, Ouro Preto, MG, Brazil
| | - Rodrigo S Correa
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto (UFOP), CEP 35400-000, Ouro Preto, MG, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, D-69117, Heidelberg, Germany
| | | |
Collapse
|
4
|
de Lima AP, Almeida MAP, Mello-Andrade F, de Castro Pereira F, Pires WC, Abreu DC, de Souza Velozo-Sá V, Batista AA, de Paula Silveira-Lacerda E. Ru(II)-Based Amino Acid Complexes Show Promise for Leukemia Treatment: Cytotoxicity and Some Light on their Mechanism of Action. Biol Trace Elem Res 2020; 197:123-131. [PMID: 31773484 DOI: 10.1007/s12011-019-01976-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Ruthenium is attracting considerable interest as the basis for new compounds to treat diseases, and studies have shown that complexes with different structures have significant antineoplastic and antimetastatic potential against several types of tumors, including tumors resistant to cisplatin drugs. We examined the cytotoxic, genotoxic, and pro-apoptotic activities of six ruthenium complexes containing amino acid with general formulation [Ru(AA)(bipy)(dppb)]PF6, where AA = amino acid (alanine, glycine, leucine, lysine, methionine, or tryptophan); bipy = 2,2´-bipyridine; and dppb = [1,4-bis(diphenylphosphine)butane], against A549 (lung carcinoma) and K562 (chronic myelogenous leukemia) cancer cells. The results show that the ruthenium complexes tested were able to induce cytotoxicity in A549 and K562 cancer cells. Complex 1 containing alanine inhibited the cell viability of A549 and K562 tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and the induction of DNA damage and cell cycle arrest. Complex 1 was able to induce caspase-mediated apoptosis in K562 cells through the mitochondrial dysfunction, the upregulation of apoptotic genes, and the downregulation of Bcl2 anti-apoptotic gene. Besides being cytotoxic to K562 and A549 cells, ruthenium complex containing alanine shows low cytotoxicity and genotoxicity against non-tumor cells. These results suggest that the ruthenium (II) complex is a potential safe and efficient antineoplastic candidate for leukemia treatment.
Collapse
Affiliation(s)
- Aliny Pereira de Lima
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
- Faculty of Brazil Institute (FIBRA), Anápolis, Goiás, 75133-050, Brazil
| | | | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Flávia de Castro Pereira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Wanessa Carvalho Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Davi Carvalho Abreu
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Vivianne de Souza Velozo-Sá
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
5
|
Velozo-Sá VS, Pereira LR, Lima AP, Mello-Andrade F, Rezende MRM, Goveia RM, Pires WC, Silva MM, Oliveira KM, Ferreira AG, Ellena J, Deflon VM, Grisolia CK, Batista AA, Silveira-Lacerda EP. In vitro cytotoxicity and in vivo zebrafish toxicity evaluation of Ru(ii)/2-mercaptopyrimidine complexes. Dalton Trans 2019; 48:6026-6039. [PMID: 30724926 DOI: 10.1039/c8dt03738h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA. HSA interaction with the complexes was studied using fluorescence emission spectroscopy, where the results indicate a spontaneous interaction between the species by a static quenching mechanism. The cytotoxicity of the complexes was evaluated against A549, MDA-MB-231 and HaCat cells by MTT assay. Complexes (1) and (2), which are very active against triple negative MDA-MB-231, were subjected to further biological tests with this cell line. The cytotoxic activity triggered by the complexes was confirmed by clonogenic assay. Cell cycle analyses demonstrated marked anti-proliferative effects, especially at the G0/G1 and S phases. The morphological detection of apoptosis and necrosis - HO/PI and Annexin V-FITC/PI assay, elucidated that the type of cell death triggered by these complexes was probably by apoptosis. The in vivo toxicological assessment performed on zebrafish embryos revealed that complexes (1) and (2) did not present embryotoxic or toxic effects during embryonic and larval development showing that they are promising new prototypes of safer and more effective drugs for triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Vivianne S Velozo-Sá
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goias-UFG, CEP 74690-900 Goiania, Goias, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
de Sousa IH, Campos VNS, Vale AAM, Maciel-Silva VL, Leite CM, Lopes AJO, Mourão PS, das Chagas Alves Lima F, Batista AA, de Azevedo Dos Santos APS, Almeida MAP, Pereira SRF. Ruthenium (II) complexes with N, O-chelating proline and threonine ligands cause selective cytotoxicity by the induction of genomic instability, cell cycle arrest and apoptosis in breast and prostate tumor cells. Toxicol In Vitro 2019; 62:104679. [PMID: 31676337 DOI: 10.1016/j.tiv.2019.104679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/27/2022]
Abstract
Ruthenium complexes are being considered as novel chemotherapeutic alternatives for cancer treatment. In our study, we assessed the antitumoral activities of novel ruthenium complexes coupled to the amino acids proline (RuPro) and threonine (RuThr) in prostate tumor cell lines (DU145) and breast (MCF7), and normal cell lines of the lung fibroblast (GM07492A). Our results revealed that the EC50 of the complexes for DU145 and MCF7 was two times lower than that GM07492A. Moreover, RuPro and RuThr were not able to induce significant genomic instability, cell cycle arrest or cell death in GM07492A, but could induce DNA damage, arrest in G2/M and apoptosis in DU145 and MCF7. Furthermore, BAX, TP53 and ATM were found to be upregulated in DU145 and MCF7 treated with RuPro and RuThr, in which, a higher ASCT2 gene expression was also observed. Using molecular docking, RuPro and RuThr interact with ASCT2, suggesting that this transporter might have a pivotal role in the execution of their activities. Hence, our results with RuPro and RuThr are capable of selectively inducing genetic damage, cell cycle arrest and apoptosis in DU145 and MCF7. We suggest that the selective action of the RuPro and RuThr complexes is related to the higher expression of ASCT2 in the tumor cells.
Collapse
Affiliation(s)
- Israel Higino de Sousa
- Postgraduate Program in Biodiversity and Biotechnology-BIONORTE, Federal University of Maranhão, Dom Delgado University City, 1966, CEP. 65085-580, São Luís, MA, Brazil; Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Brazil.
| | | | - André Alvares Marques Vale
- Postgraduate Program in Health Sciences, Federal University of Maranhão, Brazil; Laboratory of Immunology applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, Brazil
| | - Vera Lucia Maciel-Silva
- Postgraduate Program in Biodiversity and Biotechnology-BIONORTE, Federal University of Maranhão, Dom Delgado University City, 1966, CEP. 65085-580, São Luís, MA, Brazil; Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Brazil; Department of Chemistry and Biology, State University of Maranhão, Paul VI campus, CEP 65055970, São Luis, MA, Brazil
| | - Celisnolia Moraes Leite
- Department of Chemistry, Federal University of São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | - Alberto Jorge Oliveira Lopes
- Postgraduate Program in Health Sciences, Federal University of Maranhão, Brazil; Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Penina Sousa Mourão
- Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Francisco das Chagas Alves Lima
- Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
7
|
Bhatti MZ, Ali A, Duong HQ, Chen J, Rahman FU. Anticancer activity and mechanism of bis-pyrimidine based dimetallic Ru(II)(η 6-p-cymene) complex in human non-small cell lung cancer via p53-dependent pathway. J Inorg Biochem 2019; 194:52-64. [PMID: 30831390 DOI: 10.1016/j.jinorgbio.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer worldwide, which is related with poor prognosis and resistance to chemotherapy. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy. In the present study, we synthesized a novel bis-pyrimidine based ligand 1,3-bis(2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl)benzene (L) and used it in the synthesis of a dimetallic Ru(II) cymene complex [(Ru(η6-p-cymene)Cl)2(1,3-bis(2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl)benzene)] (L-Ru). We checked the stability of this complex in solution state in D2O/DMSO‑d6 mixture and found it to be highly stable under these conditions. We determined the anticancer activity and mechanism of action of L-Ru in human NSCLC A549 and A427 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and related biological analyses. These results revealed that L-Ru exerted a strong inhibitory effect on the cells proliferation,G0/G1-arrest, accompanied with upregulation of p53, p21, p15, cleaved Poly (ADP-ribose) polymerase (PARP) protein and downregulation of cell cycle markers. L-Ru inhibited cell migration and invasion. The mitochondria-mediated apoptosis of NSCLC induced by L-Ru was also observed followed by the increase of apoptosis regulator B-cell lymphoma 2 associated X (BAX), and activation of caspase-3/-9. The effects of L-Ru on the cell viability, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells and Annexin V-positive cells apoptosis induction were remarkably attenuated. This complex induced DNA damage, cell cycle arrest and cell death via caspase-dependent apoptosis involving PARP activation and induction of p53-dependent pathway. These findings suggested that this ruthenium complex might be a potential effective chemotherapeutic agent in NSCLC therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Amjad Ali
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
| | - Hong-Quan Duong
- Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Viet Nam
| | - Jiwu Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Faiz-Ur Rahman
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China; Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
8
|
Carnizello AP, Alves JM, Pereira DE, Campos JCL, Barbosa MIF, Batista AA, Tavares DC. Study of the cytotoxic and genotoxic potential of the carbonyl ruthenium(II) compound,
ct‐
[RuCl(CO)(dppb)(bipy)]PF
6
[dppb = 1,4‐bis(diphenylphosphino)butane and bipy = 2,2′‐bipyridine], by in vitro and in vivo assays. J Appl Toxicol 2018; 39:630-638. [DOI: 10.1002/jat.3753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Andréa P. Carnizello
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline M. Alves
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Daiane E. Pereira
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline C. L. Campos
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Marília I. F. Barbosa
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Alzir A. Batista
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Denise C. Tavares
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| |
Collapse
|
9
|
Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PRD, Lima APD, Oliveira R, Ferraz IBM, Grisolia CK, Almeida MAP, Batista AA, Silveira-Lacerda EDP. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomed Pharmacother 2018; 107:1082-1092. [PMID: 30257320 DOI: 10.1016/j.biopha.2018.08.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
Anticancer potential of ruthenium complexes has been widely investigated, but safety evaluation studies are still scarce. Despite of ruthenium-based anticancer agents are known to cause fewer side effects compared to other metal-based drugs, these compounds are not fully free of toxicity, causing mainly nephrotoxicity. Based on the promising results from antitumor activity of the complexes [Ru(L-Met)(bipy)(dppb)]PF6 (RuMet) and [Ru(L-Trp)(bipy)(dppb)]PF6 (RuTrp), for the first time we investigated the toxicity profile of these complexes in rodent and zebrafish models. The acute oral toxicity was evaluated in Swiss mice. The mutagenic and genotoxic potential was determined by a combination of Micronucleus (MN) and Comet assay protocols, after exposure of Swiss mice to RuMet and RuTrp in therapeutic doses. Zebrafish embryos were exposed to these complexes, and their development observed up to 96 h post-fertilization. RuMet and RuTrp complexes showed low acute oral toxicity. Recorded behavioral changes were not recorded, nor were macroscopic morphological changes or structural modifications in the liver and kidneys. These complexes did not cause genetic toxicity, presenting a lack of micronuclei formation and low DNA damage induction in the cells from Swiss mice. In contradiction, cisplatin treatment exhibited high mutagenicity and genotoxicity. RuMet and RuTrp showed low toxicity in the embryo development of zebrafish. The RuMet and RuTrp complexes demonstrated low toxicity in the two study models, an interesting property in preclinical studies for novel anticancer agents.
Collapse
Affiliation(s)
- Francyelli Mello-Andrade
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Cléver Gomes Cardoso
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Carolina Ribeiro E Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO,74690-900, Brazil
| | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO,74690-900, Brazil
| | - Paulo Roberto de Melo-Reis
- Laboratory of Experimental and Biotechnological Research, Master's Program in Environmental Sciences and Health of School of Medical Sciences, Pharmaceutical and Biomedical, Laboratory, Pontifical Catholic University of Goiás, Goiânia, GO, 74605-010, Brazil
| | - Aliny Pereira de Lima
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rhaul Oliveira
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Irvin Bryan Machado Ferraz
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
10
|
Dos Santos ER, Graminha AE, Schultz MS, Correia I, Selistre-de-Araújo HS, Corrêa RS, Ellena J, Lacerda EDPS, Pessoa JC, Batista AA. Cytotoxic activity and structural features of Ru(II)/phosphine/amino acid complexes. J Inorg Biochem 2017; 182:48-60. [PMID: 29433005 DOI: 10.1016/j.jinorgbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023]
Abstract
Thirteen new ruthenium amino acid complexes were synthesized and characterized. They were obtained by the reaction of α-amino acids (AA) with [RuCl2(P-P)(N-N)], where P-P=1,4-bis(diphenylphosphino)butane (dppb) or 1,3-bis(diphenylphosphino)propane (dppp) and N-N=4,4'-dimethyl-2,2'-bipyridine (4'-Mebipy), 5,5'-dimethyl-2,2'-bipyridine (5'-Mebipy) or 4,4'-Methoxy-2-2'-bipyridine (4'-MeObipy). This afforded a family of complexes formulated as [Ru(AA-H)(P-P)(N-N)]PF6, where AA=glycine (Gly), L-alanine (Ala), L-valine (Val), L-tyrosine (Tyr), L-tryptophan (Trp), L-histidine (His) and L-methionine (Met). All compounds were characterized by elemental analysis, spectroscopic and electrochemical techniques. The [Ru(AA-H)(P-P)(N-N)]PF6 complexes are octahedral (the AA-H ligand binding involves N-amine and O-carboxylate), diamagnetic (low-spin d6, S=0) and present bands due to electronic transitions in the visible region. 1H, 13C{1H} and 31P{1H} NMR spectra of the complexes indicate the presence of C2 symmetry, and the identification of diastereoisomers. In vitro cytotoxicity assays of the compounds and cisplatin were carried out using MDA-MB-231 (human breast) tumor cell line and a non-tumor breast cell line (MCF-10A). Most complexes present promising results with IC50 values comparable with the reference drug cisplatin and high selectivity indexes were found for the complexes containing L-Trp. The binding of two Ru-precursors of the type [RuCl2(dppb)(NN)] (N-N=4'-MeObipy or 4'-Mebipy) to the blood transporter protein human serum albumin (HSA) was evaluated by fluorescence and circular dichroism spectroscopy. Both complexes bind HSA, probably in the hydrophobic pocket near Trp214, and the Ru-complex containing 4'-MeObipy shows higher affinity for HSA than the 4'-Mebipy one.
Collapse
Affiliation(s)
- Edjane R Dos Santos
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil.
| | - Angelica E Graminha
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil
| | - Mario S Schultz
- Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, Universidade Federal do Rio de Janeiro - Campus Macaé, CEP 27910-970 Macaé, RJ, Brazil
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Heloisa S Selistre-de-Araújo
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, SP, Brazil
| | - Rodrigo S Corrêa
- Universidade Federal de Ouro Preto, Campos Morro do Cruzeiro, CEP 35.400-000 Ouro Preto, MG, Brazil
| | - Javier Ellena
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, CEP 13560-970 São Carlos, SP, Brazil
| | - Elisângela de Paula S Lacerda
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil
| |
Collapse
|
11
|
Mello-Andrade F, da Costa WL, Pires WC, Pereira FDC, Cardoso CG, Lino-Junior RDS, Irusta VRC, Carneiro CC, de Melo-Reis PR, Castro CH, Almeida MAP, Batista AA, Silveira-Lacerda EDP. Antitumor effectiveness and mechanism of action of Ru(II)/amino acid/diphosphine complexes in the peritoneal carcinomatosis progression. Tumour Biol 2017; 39:1010428317695933. [DOI: 10.1177/1010428317695933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Francyelli Mello-Andrade
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Wanderson Lucas da Costa
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Wanessa Carvalho Pires
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Flávia de Castro Pereira
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Clever Gomes Cardoso
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ruy de Souza Lino-Junior
- Laboratório de Patologia Geral, Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Cristiene Costa Carneiro
- Laboratório de Radiobiologia de Microrganismos e Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo Roberto de Melo-Reis
- Laboratório de Estudos Experimentais em Biotecnologia, Departamento de Biomedicina, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Carlos Henrique Castro
- Laboratório de Fisiologia Autonômica e Cardíaca, Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Elisângela de Paula Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Magalhães LF, Mello-Andrade F, Pires WC, Silva HD, da Silva PFF, Macedo LM, Henrique de Castro C, Carneiro CC, Cardoso CG, de Melo Reis PR, Camargo de Oliveira L, Caetano RR, Batista AA, Silveira-Lacerda EDP. cis-[RuCl(BzCN)(bipy)(dppe)]PF6 induces anti-angiogenesis and apoptosis by a mechanism of caspase-dependent involving DNA damage, PARP activation, and Tp53 induction in Ehrlich tumor cells. Chem Biol Interact 2017; 278:101-113. [PMID: 28935426 DOI: 10.1016/j.cbi.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 09/12/2017] [Indexed: 12/18/2022]
Abstract
Antimetastatic activities, low toxicity to normal cells and high selectivity for tumor cells make of the ruthenium complexes promising candidates in the search for develop new chemotherapeutic agents for the treatment of cancer. This study aimed to determine the cytotoxic, genotoxic and to elucidate the signaling pathway involved in the death cell process induced by cis-[RuCl(BzCN)(bipy)(dppb)]PF6(1) and cis-[RuCl(BzCN)(bipy)(dppe)]PF6(2) in Ehrlich ascites carcinoma (EAC) in vitro. Moreover, we report for the first time the anti-angiogenic potential on chick embryo chorioallantoic membrane (CAM) model. Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls with an age range of 20-30 years and used to calculate the selectivity index (SI). The complex 2 (IC50 = 8.5 ± 0.4/SI = 6.3) showed high cytotoxic and selectivity index against EAC cells than complex 1 (IC50 = 14.9 ± 0.2/SI = 0.2) using the MTT assay. Complex 2 induced DNA damage on Ehrlich tumor cells at concentrations and time periods evalueted. In consequence, it was observed an increase of Tp53 gene expression, G0/G1-arrest cells, and increased levels of cleaved PARP protein. Beside that, the treatment of EAC with complex 2 led to an increase in Annexin V-positive cells and apoptosis induction by Caspase-7. Additionally, the complex 2 inhibited the angiogenesis caused by Ehrlich tumor cells in CAM model. This complex is active and selective for Ehrlich tumor cells, inducing DNA damage, cell cycle arrest and cell death by caspase-dependent apoptosis involving PARP activation (PARP1), and Tp53 induction.
Collapse
Affiliation(s)
- Lorena Félix Magalhães
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Wanessa Carvalho Pires
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Hugo Delleon Silva
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Paula Francinete Faustino da Silva
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Larissa Matuda Macedo
- Laboratory of Cardiovascular Phisiology, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Carlos Henrique de Castro
- Laboratory of Cardiovascular Phisiology, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil
| | - Cristiene Costa Carneiro
- Mutagenesis and Microorganisms Radiobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
| | - Clever Gomes Cardoso
- Department of Morphology, Institute of Biological Sciences, University Federal of Goiás, Goiânia, GO, Brazil
| | | | | | | | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, SãoCarlos, SP CEP 13.565-905, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO CEP 74001-970, Brazil.
| |
Collapse
|
13
|
dos Santos ER, Corrêa RS, Pozzi LV, Graminha AE, Selistre-de-Araújo HS, Pavan FR, Batista AA. Antitumor and anti-Mycobacterium tuberculosis agents based on cationic ruthenium complexes with amino acids. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Two 3D Supramolecular Coordination Polymers Constructed from Aromatic Carboxylic Acids and Flexible Bis(thiabendazole) Ligands. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0538-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
In vitro and in vivo antitumor activity of a novel carbonyl ruthenium compound, the ct-[RuCl(CO)(dppb)(bipy)]PF6[dppb = 1,4-bis(diphenylphosphine)butane and bipy = 2,2′-bipyridine]. J Inorg Biochem 2016; 164:42-48. [DOI: 10.1016/j.jinorgbio.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
|
16
|
Directed assembly of cobalt(II) 1-H-indazole-3-carboxylic acid coordination networks by bipyridine and its derivatives: structural versatility, electrochemical properties, and antifungal activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0792-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|