1
|
Sultana SY, Sharma M, Talukdar H, Saikia G, Begum T, Sinha A, Mishra S, Sarma B, Dasgupta S, Islam NS. Synthesis, structure, stability, lipophilicity and insulin-sensitizing activity of new heteroleptic oxidovanadium(V) complexes. J Inorg Biochem 2025; 270:112939. [PMID: 40349629 DOI: 10.1016/j.jinorgbio.2025.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
A series of mixed-ligand oxidovanadium(V) complexes of the type, [VO2(L) (N-N)] (1-4) featuring hydroxypyrones (L: maltol or ethyl-maltol) and (N-N): diimine [2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen)] ligands, are reported. The synthesized complexes were characterized by spectroscopic and analytical techniques (FTIR, UV-Vis, 51V NMR, HRMS, ICP-OES and TGA). Single crystal X-ray crystallography revealed the O4N2 ligand sphere to define a distorted octahedral coordination geometry in each case. Each of the complexes is stable in air in the solid state and have good solubility in water as well as in organic solvents. The partition co-efficient, log P (octanol-water) values for the complexes being in the range (0.72-1.12) indicated their lipophilic nature. The complexes 1-4, along with two previously reported complexes [VO2(deferiprone)(bpy)]·H2O (5) and [VO2(deferiprone)(phen)]·4H2O (6) were examined for their in vitro insulin-sensitizing and insulin-like activities against insulin responsive L6 myoblast cells. The complex, [VO2(Emal)(bpy)]2·H2O (3) exhibited the most pronounced insulin-sensitizing effect, which is comparable to that of the reference compound bis(maltolato)oxidovanadium(IV), BMOV. The in vitro cytotoxicity assay against the L6 myoblast cells showed that the compounds were less toxic compared to BMOV. The complexes 1-6 were screened for their in vitro inhibitory effect on the model enzyme wheat thylakoid acid phosphatase (ACP). The enzyme kinetic analysis revealed that, compounds induce their inhibitory effect via distinct pathways. The complexes 1-4 served as mixed type of inhibitor (Kii > Ki), whereas 5 and 6 served as classical non-competitive inhibitors of the enzyme (Kii ≈ Ki).
Collapse
Affiliation(s)
| | - Mitu Sharma
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India
| | - Hiya Talukdar
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India
| | - Gangutri Saikia
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India
| | - Tahshina Begum
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India
| | - Archana Sinha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Subrata Mishra
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Nashreen S Islam
- Department of Chemical Sciences, Tezpur University, Tezpur 784 028, Assam, India.
| |
Collapse
|
2
|
Abd-El-Aziz A, Li Z, Zhang X, Elnagdy S, Mansour MS, ElSherif A, Ma N, Abd-El-Aziz AS. Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications. Top Curr Chem (Cham) 2025; 383:8. [PMID: 39900838 DOI: 10.1007/s41061-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Zexuan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Sherif Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed S Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed ElSherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Alaa S Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China.
| |
Collapse
|
3
|
Ahmed S, Rafi UM, Senthil Kumar R, Bhat AR, Berredjem M, Niranjan V, C L, Rahiman AK. Theoretical, antioxidant, antidiabetic and in silico molecular docking and pharmacokinetics studies of heteroleptic oxovanadium(IV) complexes of thiosemicarbazone-based ligands and diclofenac. J Biomol Struct Dyn 2024; 42:8407-8426. [PMID: 37599509 DOI: 10.1080/07391102.2023.2246565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
A series of new heteroleptic oxovanadium(IV) complexes with the general formula [VOL1-6(Dcf)] (1-6), where L1-6 = thiosemicarbazone (TSC)-based ligands and Dcf = diclofenac have been synthesized and characterized. The spectral studies along with the density functional theory calculations evidenced the distorted square-pyramidal geometry around oxovanadium(IV) ion through imine nitrogen and thione sulfur atoms of TSC moiety, and two asymmetric carboxylate oxygen atoms of diclofenac drug. The complexes were evaluated for in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and superoxide radical scavenging assays with respect to the standard antioxidant drugs butylated hydroxyanisole (BHA) and rutin. The in vitro antidiabetic activity of the complexes was tested with enzymes such as α-amylase, α-glucosidase and glucose-6-phosphatase. The complexes containing methyl substituent showed higher activity than that containing the nitro substituent due to the electron-donating effect of methyl group. The in silico molecular docking studies of the oxovanadium(IV) complexes with α-amylase and α-glucosidase enzymes showed strong interaction via hydrogen bonding and hydrophobic interactions. The dynamic behavior of the proposed complexes was analyzed by molecular dynamics (MDs) simulations, which revealed the stability of docked structures with α-amylase and α-glucosidase enzymes. The in silico physicochemical and pharmacokinetics parameters, such as Lipinski's 'rule of five', Veber's rule and absorption, distribution, metabolism and excretion (ADME) properties predicted non-toxic, non-carcinogenic and safe oral administration of the synthesized complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ummer Muhammed Rafi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu, India
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Annaba, Algeria
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Lavanya C
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| |
Collapse
|
4
|
Thakor PM, Patel JD, Patel RJ, Chaki SH, Khimani AJ, Vaidya YH, Chauhan AP, Dholakia AB, Patel VC, Patel AJ, Bhavsar NH, Patel HV. Exploring New Schiff Bases: Synthesis, Characterization, and Multifaceted Analysis for Biomedical Applications. ACS OMEGA 2024; 9:35431-35448. [PMID: 39184520 PMCID: PMC11339819 DOI: 10.1021/acsomega.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 08/27/2024]
Abstract
The current work aims to generate novel Schiff bases by reacting substituted aldehydes with amine derivatives catalyzed by a natural acid. The developed compounds underwent diverse physicochemical analyses including liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, 1H- and 13C-nuclear magnetic resonance, and X-ray diffraction. Furthermore, differential thermogravimetric, thermogravimetric, and differential thermal analysis techniques were employed in a nitrogen-free environment to determine kinetic parameters. These data were then used in model-free isoconversional methods (e.g., Friedman, Kissinger-Akahira-Sunose, and Flynn-Wall-Ozawa). The Schiff bases were evaluated for their in vitro and in silico α-amylase inhibitory activity. Schiff base-2 displayed the highest inhibition compared with the reference drug acarbose. In comprehensive MTT assay cytotoxicity investigations, both Schiff bases showed strong anticancer capabilities against the human lung cancer cell line (A549). Moreover, this study demonstrated effectiveness of synthetic compounds in screening Caenorhabditis elegans for anti-Alzheimer's and stress resistance properties. The simplicity of its biology allowed precise evaluation of the effect of compounds on neuronal function and stress response. This research enhances drug discovery efforts for Alzheimer's and stress-related disorders, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Priteshkumar M Thakor
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Jatin D Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Rajesh J Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388001, India
| | - Sunil H Chaki
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388001, India
| | - Ankurkumar J Khimani
- Department of Physics, Shri Alpesh N. Patel Cnce and Research, Anand, Gujarat 388001, India
| | - Yati H Vaidya
- Department of Microbiology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Anita P Chauhan
- Department of Biotechnology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Amit B Dholakia
- School of Science, Birsa Munda Tribal University, Rajpipla, Gujarat 393145, India
| | - Vishant C Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Ankitkumar J Patel
- Department of Chemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Nirav H Bhavsar
- Department of Microbiology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| | - Hiteshkumar V Patel
- Department of Biochemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat 388001, India
| |
Collapse
|
5
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
6
|
Thakor P, Patel RJ, Giri RK, Chaki SH, Khimani AJ, Vaidya YH, Thakor P, Thakkar AB, Patel JD. Synthesis, Spectral Characterization, Thermal Investigation, Computational Studies, Molecular Docking, and In Vitro Biological Activities of a New Schiff Base Derived from 2-Chloro Benzaldehyde and 3,3'-Dimethyl-[1,1'-biphenyl]-4,4'-diamine. ACS OMEGA 2023; 8:33069-33082. [PMID: 37720740 PMCID: PMC10500648 DOI: 10.1021/acsomega.3c05254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
The current research involves the synthesis of a new Schiff base through the reaction between 2-chlorobenzaldehyde and 3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diamine by using a natural acid catalyst and a synthesized compound physicochemically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, 1H- and 13C-nuclear magnetic resonance, and liquid chromatography-mass spectrometry. Thermal studies were conducted using thermogravimetric, differential thermal analysis, and differential thermogravimetric curves. These curves were obtained in an inert nitrogen environment from ambient temperature to 1263 K using heating rates of 10, 15, and 20 K·min-1. Using thermocurve data, model-free isoconversional techniques such as Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Friedman are used to determine kinetic parameters. These parameters include activation energy, phonon frequency factor, activation enthalpy, activation entropy, and Gibb's free energy change. All of the results have been thoroughly investigated. The molecule's anti-inflammatory and antidiabetic properties were also examined. To learn more about the potential of the Schiff base and how successfully it can suppress the amylase enzyme, a molecular docking experiment was also conducted. For in silico research, the Swiss Absorption, Distribution, Metabolism, Excretion, and Toxicity algorithms were used to calculate the theoretical pharmacokinetic properties, oral bioavailability, toxic effects, and biological activities of the synthesized molecule. Moreover, the cytotoxicity tests against a human lung cancer cell line (A549) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that the synthesized Schiff base exhibited significant anticancer properties.
Collapse
Affiliation(s)
- Priteshkumar
M. Thakor
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Rajesh J. Patel
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Ranjan Kr. Giri
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Sunil H. Chaki
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Ankurkumar J. Khimani
- Department
of Physics, Shri Alpesh N. Patel Post Graduate
Institute of Science and Research, Anand 388001, Gujarat, India
| | - Yati H. Vaidya
- Department
of Microbiology, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| | - Parth Thakor
- B.
D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT campus, Changa 388421, Gujarat, India
| | - Anjali B. Thakkar
- P. G. Department
of Biosciences and P. G. Department of Applied and Interdisciplinary
Sciences, Sardar Patel University, Anand 388120, Gujarat, India
| | - Jatin D. Patel
- Department
of Chemistry, Shri Alpesh N. Patel Post
Graduate Institute of Science and Research, Anand 388001, Gujarat, India
| |
Collapse
|
7
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
8
|
Jurowska A, Szklarzewicz J, Glos I, Hodorowicz M, Zangrando E, Mahmoudi G. Effect of di- and tri-ethylammonium cations on the structure and physicochemical properties of dioxido vanadium(V) Schiff base complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Aminobenzopyranoxanthene based salicylhydrazone probe for colorimetric detection of Cu2+. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2022.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Padmaja D, Rajegowda H, Chethan B, Krishnamurthy P, Khan RUR, Suchetan P, Lokanath N, Somashekar M, Jayashankar B. New thioether-hydrazide based ONS donor Schiff base and its Pd(II) complex: Synthesis, crystal structure, thermal analysis, hirshfeld surface analysis, quantum chemical studies and molecular docking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Jurowska A, Serafin W, Hodorowicz M, Kruczała K, Szklarzewicz J. Vanadium precursors and the type of complexes formed with Schiff base ligand composed of 5-bromosalicylaldehyde and 2-hydroxybenzhydrazide – Structure and characterization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Jasińska A, Szklarzewicz J, Jurowska A, Hodorowicz M, Kazek G, Mordyl B, Głuch-Lutwin M. V(III) and V(IV) Schiff base complexes as potential insulin-mimetic compounds – comparison, characterization and biological activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|