1
|
Wang J, Ma Y, Mahapatra M, Kang J, Senanayake SD, Tong X, Stacchiola DJ, White MG. Surface structure of mass-selected niobium oxide nanoclusters on Au(111). NANOTECHNOLOGY 2021; 32:475601. [PMID: 34380123 DOI: 10.1088/1361-6528/ac1cc0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The structures formed by the deposition of mass-selected niobium oxide clusters, Nb3Oy(y = 5, 6, 7), onto Au(111) were studied by scanning tunneling microscopy. The as-deposited Nb3O7clusters assemble into large dendritic structures that grow on the terraces as well as extend from the top and bottom of step edges. The Nb3O6cluster also forms dendritic assemblies but they are generally much smaller in size. The assemblies are composed of smaller discrete structures (<1 nm) which are likely to be single clusters. The dendritic assemblies for both the Nb3O7and Nb3O6clusters have fractal dimensions of about 1.7 which is very close to that expected for simple diffusion limited aggregation. Annealing the Nb3O7,6/Au(111) surfaces up to 550 K results in changes in assembly sizes and increases in heights, while heating to 700 results in the disruption of the assemblies into smaller structures. By contrast, the as-deposited Nb3O5/Au(111) surface at RT exhibits compact cluster structures which become 3D nanoparticles when annealed above 550 K. Differences in the observed surface structures and thermal stability are attributed to differences in metal-oxygen stoichiometry which can influence cluster binding energies, mobility and inter-cluster interactions.
Collapse
Affiliation(s)
- Jason Wang
- Department of Chemistry, Stony Brook University, Stony Brook 11794 NY, United States of America
| | - Yilin Ma
- Department of Chemistry, Stony Brook University, Stony Brook 11794 NY, United States of America
| | - Mausumi Mahapatra
- Chemistry Division, Brookhaven National Laboratory, Upton 11973 NY, United States of America
| | - Jindong Kang
- Department of Chemistry, Stony Brook University, Stony Brook 11794 NY, United States of America
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton 11973 NY, United States of America
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton 11973 NY, United States of America
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton 11973 NY, United States of America
| | - Michael G White
- Department of Chemistry, Stony Brook University, Stony Brook 11794 NY, United States of America
- Chemistry Division, Brookhaven National Laboratory, Upton 11973 NY, United States of America
| |
Collapse
|
2
|
Goodman KR, Wang J, Ma Y, Tong X, Stacchiola DJ, White MG. Morphology and reactivity of size-selected titanium oxide nanoclusters on Au(111). J Chem Phys 2020; 152:054714. [DOI: 10.1063/1.5134453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kenneth R. Goodman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jason Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yilin Ma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dario J. Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Michael G. White
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
3
|
Barcaro G, Fortunelli A. 2D oxides on metal materials: concepts, status, and perspectives. Phys Chem Chem Phys 2019; 21:11510-11536. [DOI: 10.1039/c9cp00972h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional oxide-on-metal materials: concepts, methods, and link to technological applications, with 5 subtopics: structural motifs, robustness, catalysis, ternaries, and nanopatterning.
Collapse
|
4
|
Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01913] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio Ruiz Puigdollers
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Philomena Schlexer
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| |
Collapse
|
5
|
|
6
|
DFT study of catalytic activity of an ultrathin TiO2(110) layer covering Au(112): O2 activation, CO oxidation, and replacing Au with Ag. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Shi J, Mahr C, Murshed MM, Zielasek V, Rosenauer A, Gesing TM, Bäumer M, Wittstock A. A versatile sol–gel coating for mixed oxides on nanoporous gold and their application in the water gas shift reaction. Catal Sci Technol 2016. [DOI: 10.1039/c5cy02205c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ceria–titania mixed oxides on a structured nanoporous gold support result in highly active and durable catalysts for the water-gas shift reaction.
Collapse
Affiliation(s)
- Junjie Shi
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Christoph Mahr
- Institute of Solid State Physics
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - M. Mangir Murshed
- Solid State Chemical Crystallography, Institute of Inorganic Chemistry and Crystallography/FB02
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Volkmar Zielasek
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Andreas Rosenauer
- Institute of Solid State Physics
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Thorsten M. Gesing
- Solid State Chemical Crystallography, Institute of Inorganic Chemistry and Crystallography/FB02
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Marcus Bäumer
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Arne Wittstock
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology
- University Bremen
- Bremen
- Germany
- MAPEX Center for Materials and Processes
| |
Collapse
|
8
|
Ma T, Surnev S, Netzer FP. Growth of Ceria Nano-Islands on a Stepped Au(788) Surface. MATERIALS 2015; 8:5205-5215. [PMID: 28793499 PMCID: PMC5455521 DOI: 10.3390/ma8085205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
The growth morphology and structure of ceria nano-islands on a stepped Au(788) surface has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Within the concept of physical vapor deposition, different kinetic routes have been employed to design ceria-Au inverse model catalysts with different ceria nanoparticle shapes and arrangements. A two-dimensional superlattice of ceria nano-islands with a relatively narrow size distribution (5 ± 2 nm2) has been generated on the Au(788) surface by the postoxidation method. This reflects the periodic anisotropy of the template surface and has been ascribed to the pinning of ceria clusters and thus nucleation on the fcc domains of the herringbone reconstruction on the Au terraces. In contrast, the reactive evaporation method yields ceria islands elongated in [01-1] direction, i.e., parallel to the step edges, with high aspect ratios (~6). Diffusion along the Au step edges of ceria clusters and their limited step crossing in conjunction with a growth front perpendicular to the step edges is tentatively proposed to control the ceria growth under reactive evaporation conditions. Both deposition recipes generate two-dimensional islands of CeO2(111)-type O–Ce–O single and double trilayer structures for submonolayer coverages.
Collapse
Affiliation(s)
- Teng Ma
- College of Science, Shenyang Agricultural University, Shenyang 110168, China.
- Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, A-8010 Graz, Austria.
| | - Svetlozar Surnev
- Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, A-8010 Graz, Austria.
| | - Falko P Netzer
- Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, A-8010 Graz, Austria.
| |
Collapse
|
9
|
Ding D, Zheng Y, Li H, Tang Z, Chen M, Wan H. Model catalysis studies of the oxidation of propane over VOx-based catalysts. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ringleb F, Fujimori Y, Brown MA, Kaden WE, Calaza F, Kuhlenbeck H, Sterrer M, Freund HJ. The role of exposed silver in CO oxidation over MgO(0 0 1)/Ag(0 0 1) thin films. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Shin D, Sinthika S, Choi M, Thapa R, Park N. Ab Initio Study of Thin Oxide–Metal Overlayers as an Inverse Catalytic System for Dioxygen Reduction and Enhanced CO Tolerance. ACS Catal 2014. [DOI: 10.1021/cs501153p] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongbin Shin
- Department
of Physics, Ulsan National Institute of Science and Technology, Ulsan, 689-798 Korea
| | - S. Sinthika
- SRM
Research Institute, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Min Choi
- Department
of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 689-798 Korea
| | - Ranjit Thapa
- SRM
Research Institute, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Noejung Park
- Department
of Physics, Ulsan National Institute of Science and Technology, Ulsan, 689-798 Korea
- Center
for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 689-798 Korea
| |
Collapse
|
12
|
Bugyi L, Szenti I, Kónya Z. Promotion and inhibition effects of TiOx species on Rh inverse model catalysts. APPLIED SURFACE SCIENCE 2014; 313:432-439. [DOI: 10.1016/j.apsusc.2014.05.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Surnev S, Fortunelli A, Netzer FP. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem Rev 2012; 113:4314-72. [PMID: 23237602 DOI: 10.1021/cr300307n] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Svetlozar Surnev
- Surface and Interface Physics, Institute of Physics, Karl-Franzens University, Graz A-8010 Graz, Austria
| | | | | |
Collapse
|
14
|
|
15
|
|
16
|
Barcaro G, Thomas IO, Fortunelli A. Validation of density-functional versus density-functional+U approaches for oxide ultrathin films. J Chem Phys 2010; 132:124703. [DOI: 10.1063/1.3366689] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Lovis F, Hesse M, Imbihl R. Redistribution of Supported Vanadium Oxide Catalysts by Pattern Formation. Catal Letters 2010. [DOI: 10.1007/s10562-010-0320-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Abstract
Most metals are oxidized under ambient conditions, and metal oxides show interesting and technologically promising properties. This has motivated much recent research on oxide surfaces. The combination of scanning tunneling microscopy with first-principles density functional theory–based computational techniques provides an atomic-scale view of the properties of metal-oxide materials. Surface polarity is a key concept for predicting the stability of oxide surfaces and is discussed using ZnO as an example. This review also highlights the role of surface defects for surface reactivity, and their interplay with defects in the bulk, for the case of TiO2. Ultrathin metal-oxide films, grown either through reactive evaporation on metal single crystals or through oxidation of metal alloys (such as Al2O3/NiAl), have gained popularity as supports for planar model catalysts. The surface oxides that form upon oxidation on Pt-group metals (e.g., Ru, Rh, Pd, and Pt) are considered as model systems for CO oxidation.
Collapse
Affiliation(s)
- Ulrike Diebold
- Department of Physics, Tulane University, New Orleans, Louisiana 70118
| | - Shao-Chun Li
- Department of Physics, Tulane University, New Orleans, Louisiana 70118
| | - Michael Schmid
- Institut für Allgemeine Physik, Technische Universität Wien, A-1040 Vienna, Austria
| |
Collapse
|
19
|
Wu QH, Fortunelli A, Granozzi G. Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350903172453] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
A comparison between the absorption properties of the regular and F s -defected MgO (100) surface. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0324-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Kim J, Bondarchuk O, Kay BD, White J, Dohnálek Z. Preparation and characterization of monodispersed WO3 nanoclusters on TiO2(110). Catal Today 2007. [DOI: 10.1016/j.cattod.2006.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Abstract
The technique of scanning tunnelling microscopy has revolutionised our understanding of surface chemistry, due to its ability to image at the atomic and molecular scale, the very realm at which chemistry operates. This critical review focuses on its contribution to the resolution of various problems in heterogeneous catalysis, including surface structure, surface intermediates, active sites and spillover. In the article a number of images of surfaces are shown, many at atomic resolution, and the insights which these give into surface reactivity are invaluable. The article should be of interest to catalytic chemists, surface and materials scientists and those involved with nanotechnology/nanoscience. (129 references.)The graphical abstract shows the reaction between gas phase methanol and oxygen islands on Cu(110), courtesy of Philip Davies of Cardiff University. The added-row island is shown as silver-coloured spheres (copper) and red (oxygen) on the copper surface. Methanol preferentially reacts with the terminal oxygen atoms in the island forming adsorbed methoxy and OH groups. Only the terminal oxygen atoms in the island are active sites for the reaction.
Collapse
Affiliation(s)
- Michael Bowker
- Wolfson Nanoscience Laboratory, School of Chemistry, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
23
|
Kratzer M, Surnev S, Netzer FP, Winkler A. Model reaction studies on vanadium oxide nanostructures on Pd(111). J Chem Phys 2006; 125:074703. [PMID: 16942360 DOI: 10.1063/1.2336770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deuterium desorption and reaction between deuterium and oxygen to water has been studied on ultrathin vanadium oxide structures prepared on Pd(111). The palladium sample was part of a permeation source, thus enabling the supply of atomic deuterium to the sample surface via the bulk. Different vanadium oxide films have been prepared by e-beam evaporation in UHV under oxygen atmosphere. The structure of these films was determined using low energy electron diffraction and scanning tunneling microscopy. The mean translational energy of the desorption and reaction products has been measured with a time-of-flight spectrometer. The most stable phases for monolayer and submonolayer VOx are particular surface-V2O3 and VO phases at 523 and 700 K, respectively. Thicker films grow in the form of bulk V2O3. The mean translational energy of the desorbing deuterium species corresponds in all cases to the thermalized value. Apparent deviations from this energy distribution could be attributed to different adsorption/desorption and/or accommodation behaviors of molecular deuterium from the gas phase on the individual vanadium oxide films. The water reaction product shows a slightly hyperthermal mean translational energy, suggesting that higher energetic permeating deuterium contributes with higher probability to the water formation.
Collapse
Affiliation(s)
- M Kratzer
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | | | | | | |
Collapse
|