1
|
Baek S, Gutierrez-Portocarrero S, Gerulskis R, Minteer SD, German SR, White HS. Detection of CO 2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes. ACS NANO 2025; 19:13240-13249. [PMID: 40130603 DOI: 10.1021/acsnano.5c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO2)-sensitive ion-selective electrode (ISE) pipettes (0.5-2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO32-) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO2 generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO32-, rendering efficient quantification of CO2 without interference from solution composition changes arising from faradaic processes. The total amount of CO2 generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD+, and substrate, i.e., formate, concentrations both in constant tip-sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO2 levels in blood serum.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | | | - Rokas Gerulskis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sean R German
- Electronic BioSciences, 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Leng BL, Lin X, Chen JS, Li XH. Electrocatalytic water-to-oxygenates conversion: redox-mediated versus direct oxygen transfer. Chem Commun (Camb) 2024; 60:7523-7534. [PMID: 38957004 DOI: 10.1039/d4cc01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electrocatalytic oxygenation of hydrocarbons with high selectivity has attracted much attention for its advantages in the sustainable and controllable production of oxygenated compounds with reduced greenhouse gas emissions. Especially when utilizing water as an oxygen source, by constructing a water-to-oxygenates conversion system at the anode, the environment and/or energy costs of producing oxygenated compounds and hydrogen energy can be significantly reduced. There is a broad consensus that the generation and transformation of oxygen species are among the decisive factors determining the overall efficiency of oxygenation reactions. Thus, it is necessary to elucidate the oxygen transfer process to suggest more efficient strategies for electrocatalytic oxygenation. Herein, we introduce oxygen transfer routes through redox-mediated pathways or direct oxygen transfer methods. Especially for the scarcely investigated direct oxygen transfer at the anode, we aim to detail the strategies of catalyst design targeting the efficient oxygen transfer process including activation of organic substrate, generation/adsorption of oxygen species, and transformation of oxygen species for oxygenated compounds. Based on these examples, the significance of balancing the generation and transformation of oxygen species, tuning the states of organic substrates and intermediates, and accelerating electron transfer for organic activation for direct oxygen transfer has been elucidated. Moreover, greener organic synthesis routes through heteroatom transfer and molecular fragment transfer are anticipated beyond oxygen transfer.
Collapse
Affiliation(s)
- Bing-Liang Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Xiu Lin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
3
|
Joshi PB, Wilson AJ. Potential-Dependent Temporal Dynamics of CO Surface Concentration in Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023:5754-5759. [PMID: 37319405 DOI: 10.1021/acs.jpclett.3c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Beyond the identity and structure of an intermediate, changes in its concentration on and near the electrode surface with time are a critical component to understand and improve selectivity and reactivity in electrochemical transformations. We apply pulsed-potential electrochemical Raman scattering microscopy to measure the potential-dependent temporal evolution of CO formed during electrocatalytic CO2 reduction in acetonitrile on Ag electrodes. At driving potentials positive of the onset potential as determined by cyclic voltammetry, CO accumulates on the electrode surface at time scales longer than 1 s. Near the ensemble onset potential, CO resides on the electrode surface for approximately 100 ms. At potentials known to evolve CO from the electrode surface, CO remains adsorbed on the electrode for less than 10 ms. The time scales accessible in our strategy are nearly 3 orders of magnitude faster than transient Raman or infrared measurements, allowing direct measurement of the temporal evolution of intermediates.
Collapse
Affiliation(s)
- Padmanabh B Joshi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
4
|
Electrochemical Oxidation of 1-Propanol through Proton Exchange Membrane Electrolysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Sikeyi LL, Ntuli TD, Mongwe TH, Maxakato NW, Coville NJ, Maubane-Nkadimeng MS. Platinum nanoparticles loaded on pristine and boron oxide modified carbon nano-onions for enhanced ammonia electrooxidation in alkaline direct ammonia fuel cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Determination of the electrochemically active surface area by CO and hydrogen of PtSnRuTa/C-based electrocatalysts and their relationship with catalytic activity against alcohol oxidation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Pt nanowires as electrocatalysts for proton-exchange membrane fuel cells applications: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ferreira da Silva P, Ferreira Gomes B, Silva Lobo CM, Carmo M, Roth C, Colnago LA. Composite Graphite-Epoxy Electrodes for In Situ Electrochemistry Coupling with High Resolution NMR. ACS OMEGA 2022; 7:4991-5000. [PMID: 35187316 PMCID: PMC8851621 DOI: 10.1021/acsomega.1c05823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The in situ coupling between electrochemistry and spectrometric techniques can help in the identification and quantification of the compounds produced and consumed during electrochemical reactions. The combination of electrochemistry with nuclear magnetic resonance is quite attractive in this respect, but it has some challenges to be addressed, namely, the reduction in the quality of the NMR signal when the metallic electrodes are placed close to or in the detection region. Since NMR is not a passive technique, the convective effect of the magnetic force (magnetoelectrolysis), which acts by mixing the solution and increasing the mass transport, has to be considered. In seeking to solve the aforementioned problems, we developed a system of miniaturized electrodes inside a 5 mm NMR tube (outer diameter); the working and counter electrodes were prepared with a mixture of graphite powder and epoxy resin. To investigate the performance of the electrodes, the benzoquinone reduction to hydroquinone and the isopropanol oxidation to acetone were monitored. To monitor the alcohol oxidation reaction, the composite graphite-epoxy electrode (CGEE) surface was modified through platinization. The electrode was efficient for in situ monitoring of the aforementioned reactions, when positioned 1 mm above the detection region of the NMR spectrometer. The magnetoelectrolysis effect acts by stirring the solution and increases the reaction rate of the reduction of benzoquinone, because this reaction is limited by mass transport, while no effect on the reaction rate is observed for the isopropanol oxidation reaction.
Collapse
Affiliation(s)
- Pollyana Ferreira da Silva
- Instituto
de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Bruna Ferreira Gomes
- Instituto
de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Carlos Manuel Silva Lobo
- Instituto
de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, SP Brazil
| | - Marcelo Carmo
- Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Christina Roth
- Electrochemical
Process Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Luiz Alberto Colnago
- Embrapa
Instrumentação, Rua XV de Novembro, 1452, 13560-970 São Carlos, SP Brazil
| |
Collapse
|
9
|
White J, Anil A, Martín-Yerga D, Salazar-Alvarez G, Henriksson G, Cornell A. Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63766-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Pan Y, Blum AS, Mauzeroll J. Tunable Assembly of Protein Enables Fabrication of Platinum Nanostructures with Different Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52588-52597. [PMID: 34724375 DOI: 10.1021/acsami.1c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are promising biofunctional units for the construction of nanomaterials (NMs) due to their abundant binding sites, intriguing self-assembly properties, and mild NM synthetic conditions. Tobacco mosaic virus coat protein (TMVCP) is a protein capable of self-assembly into distinct morphologies depending on the solution pH and ionic strength. Herein, we report the use of TMVCP as a building block to organize nanosized platinum into discrete nanorings and isolated nanoparticles by varying the solution pH to modulate the protein assembly state. Compared with a commercial Pt/C catalyst, the TMVCP-templated platinum materials exhibited significant promotion of the catalytic activity and stability toward methanol electrooxidation in both neutral and alkaline conditions. The enhanced catalytic performance is likely facilitated by the protein support. Additionally, Pt nanorings outperformed isolated nanoparticles, although they are both synthesized on TMVCP templates. This could be due to the higher mechanical stability of the protein disk structure and possible cooperative effects between adjacent nanoparticles in the ring with narrow interparticle spacing.
Collapse
Affiliation(s)
- Yani Pan
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, MontrealH3A 0B8, Quebec, Canada
| |
Collapse
|
12
|
Bezerra RC, Mendonça JPAD, Mendes PCD, Passos RR, Da Silva JLF. Role of the OH-group in the adsorption properties of methanol, ethanol, and ethylene glycol on 15-atom 3d, 4d, and 5d transition-metal clusters. Phys Chem Chem Phys 2021; 23:17553-17566. [PMID: 34369523 DOI: 10.1039/d1cp01806j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of alcohols on transition-metal (TM) substrates has received the attention of many researchers due to the applications of alcohols in several technological fields. However, our atomic-level understanding is still far from satisfactory, in particular for the interaction of alcohols with finite-size TM clusters, where new effects can arise due to the presence of quantum-size effects. In this work, we report a theoretical investigation of the adsorption properties of methanol, ethanol, and ethylene glycol on 12 different 3d, 4d, and 5d TM15 clusters based on density functional theory calculations within the semi-empirical D3 van der Waals corrections. From the correlation analysis of all the lowest- and high-energy configurations, we identified the adsorption modes of methanol, ethanol, and ethylene glycol on the TM15 clusters, in which the OH group binds to the cationic TM sites via the O-TM and H-TM interactions. Due to the relatively weak alcohol-TM15 interaction, the changes induced on the TM15 clusters are small, except for Au15 and Ru15, where the bare cluster changes its structure to a nearby minimum in the potential energy surface. The adsorption energy for the alcohol/TM15 systems is correlated to the combination of several parameters, in which the main contribution is connected with the O-TM interaction and the HOTM angles. Furthermore, the TM electronegativity is an important descriptor for the methanol and ethanol adsorption energies, while charge transfer is important for ethylene glycol.
Collapse
Affiliation(s)
- Raquel C Bezerra
- Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil
| | | | | | | | | |
Collapse
|
13
|
Fuku X, Modibedi M, Mkhohlakali A, Mathe M. Co-existence of Pd, Bi 2O 3 and CuO supported on porous activated biocarbon for electrochemical conversion and energy storage. NEW J CHEM 2021. [DOI: 10.1039/d1nj02184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The co-existence of metal oxides (MO) and activated carbon (AC) causes changes in the catalytic behaviour and activity which would contribute greatly to a number of applications.
Collapse
Affiliation(s)
- Xolile Fuku
- CSIR Energy Centre, PO Box 395, Pretoria, 0001, South Africa
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | | | - Andile Mkhohlakali
- CSIR Energy Centre, PO Box 395, Pretoria, 0001, South Africa
- Department of Mechanical Engineering, B3 lab 103, University of Johannesburg, Auckland Park Campus, 2006, 0001, South Africa
| | - Mkhulu Mathe
- CSIR Energy Centre, PO Box 395, Pretoria, 0001, South Africa
| |
Collapse
|
14
|
Synthesis and Evaluation of PtNi Electrocatalysts for CO and Methanol Oxidation in Low Temperature Fuel Cells. Catalysts 2020. [DOI: 10.3390/catal10050563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pt(Ni)/C and PtRu(Ni)/C catalysts were synthesized by electroless deposition of Ni on a carbon dispersion followed by sequenced Pt deposition and spontaneous deposition of Ru species. The structural analyses of the catalysts with 88:12 and 98:2 Pt:Ni atomic ratios pointed out to the formation of small hexagonal Ni crystallites covered by thin cubic Pt surface structures with no evidence about PtNi alloy formation. The onset potentials for CO oxidation on Pt(Ni)/C and PtRu(Ni)/C were about 0.10 and 0.24 V more negative than those of Pt/C, thus indicating their better CO tolerance. The surface Ru species appeared to have the major effect by facilitating the CO removal by the bifunctional mechanism. The onset potential for the methanol oxidation reaction (MOR) of Pt(Ni)/C was about 0.15 V lower than that of Pt/C. The mass and specific activities together with the exchange current densities of the Pt(Ni)/C catalysts were also higher than those of Pt/C, making in evidence their higher activity in front of the MOR. The Tafel slopes for the MOR on Pt(Ni)/C suggested different reaction mechanism than on Pt/C. The electronic (ligand) effect of Ni on Pt was considered the main reason to explain the higher activity of Pt(Ni)/C in front of the CO oxidation and the MOR.
Collapse
|
15
|
Pu L, Fan H, Maheshwari V. Formation of microns long thin wire networks with a controlled spatial distribution of elements. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02365h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
By controlling the spatial distribution of elements using a simple self-assembly process, the catalytic performance can be enhanced.
Collapse
Affiliation(s)
- Long Pu
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Hua Fan
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Vivek Maheshwari
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| |
Collapse
|
16
|
Activity and stability improvement of platinum loaded on reduced graphene oxide and carbon nanotube composites for methanol oxidation. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Photochemical oxidation of alcohols: Simple derivatization strategy for their analysis by capillary electrophoresis. Food Chem 2019; 292:114-120. [DOI: 10.1016/j.foodchem.2019.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
|
18
|
Abstract
Pt/C and Pt/SnOx/C catalysts were synthesized using the polyol method. Their structure, morphology and chemical composition were studied using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer, transition electron microscope and X-ray photoelectron spectroscope. Electrochemical measurements were based on the results of rotating disk electrode (RDE) experiments applied to ethanol electrooxidation. The quick evaluation of catalyst activity, electrochemical behavior, and an average number of transferred electrons were made using the RDE technique. The usage of SnOx (through the carbon support modification) in a binary system together with Pt causes a significant increase of the catalyst activity in ethanol oxidation reaction and the utilization of ethanol.
Collapse
|
19
|
|