1
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
2
|
Higareda A, Mares F, Bahena D, Esparza R. Structural Analysis of PtPd Core‐Shell Bimetallic Nanoparticles and their Enhanced Catalytic Performance for Ethanol Oxidation Reaction. ChemCatChem 2023. [DOI: 10.1002/cctc.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- América Higareda
- Unidad de Energía Renovable Centro de Investigación Científica de Yucatán A.C. Carretera Sierra Papacal – Chuburná Puerto, Km 5. Sierra Papacal 97302 Mérida Yucatán México
| | - Fabian Mares
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica Centro de Investigación y de Estudios Avanzados del I.P.N. Av. Instituto Politécnico Nacional 2508 07360 Ciudad de México México
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| |
Collapse
|
3
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
4
|
Yao Z, Yuan Y, Cheng T, Gao L, Sun T, Lu Y, Zhou YG, Galindo PL, Yang Z, Xu L, Yang H, Huang H. Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. NANO LETTERS 2021; 21:9354-9360. [PMID: 34719926 DOI: 10.1021/acs.nanolett.1c03805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The classical size effect of Pt particles on oxygen reduction reaction (ORR) suggests that the activity and durability would decrease with reducing the particle size, self-limiting the effectiveness in maximizing the Pt utilization efficiency with the particle-size-reduction strategy. Herein, we discover an anomalous size effect based on Pt nanowires (NWs) with tunable diameters, where the monotonically increasing activity and durability for ORR were observed with decreasing the diameter from 2.4 to 1.1 nm. Our results reveal that the dominant role of increased compressive strain induced by decreasing the diameter of NWs in weakening the adsorption and suppressing the Pt dissolution accounts for this anomalous size effect, where the reduced low-coordinated sites on NWs, the intrinsic structural advantage, is the root. Our findings not only expand the knowledge to the classical size effect but also provide new implications to break through the size limit in the design of Pt-based ORR catalysts.
Collapse
Affiliation(s)
- Zhaoyu Yao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yangfan Lu
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yi-Ge Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Pedro L Galindo
- Department of Computer Engineering, University de Cadiz, Cadiz, Andalusia 11510, Spain
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Theoretical Investigation of the Size Effect on the Oxygen Adsorption Energy of Coinage Metal Nanoparticles. Catal Letters 2021. [DOI: 10.1007/s10562-021-03567-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThis study evaluates the finite size effect on the oxygen adsorption energy of coinage metal (Cu, Ag and Au) cuboctahedral nanoparticles in the size range of 13 to 1415 atoms (0.7–3.5 nm in diameter). Trends in particle size effects are well described with single point calculations, in which the metal atoms are frozen in their bulk position and the oxygen atom is added in a location determined from periodic surface calculations. This is shown explicitly for Cu nanoparticles, for which full geometry optimization only leads to a constant offset between relaxed and unrelaxed adsorption energies that is independent of particle size. With increasing cluster size, the adsorption energy converges systematically to the limit of the (211) extended surface. The 55-atomic cluster is an outlier for all of the coinage metals and all three materials show similar behavior with respect to particle size.
Graphic Abstract
Collapse
|
6
|
Abstract
Density functional theory calculations of atomic and molecular adsorption on (111) and (100) metal surfaces reveal marked surface and structure dependent effects of strain. Adsorption in three-fold hollow sites is found to be destabilized by compressive strain whereas the reversed trend is commonly valid for adsorption in four-fold sites. The effects, which are qualitatively explained using a simple two-orbital model, provide insights on how to modify chemical properties by strain design.
Collapse
Affiliation(s)
- Elisabeth M. Dietze
- Department of Physics and Competence Centre for CatalysisChalmers University of Technology41296GöteborgSweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for CatalysisChalmers University of Technology41296GöteborgSweden
| |
Collapse
|
7
|
Streibel V, Choksi TS, Abild-Pedersen F. Predicting metal-metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. J Chem Phys 2020; 152:094701. [PMID: 33480713 DOI: 10.1063/1.5130566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strain-engineering of bimetallic nanomaterials is an important design strategy for developing new catalysts. Herein, we introduce an approach for including strain effects into a recently introduced, density functional theory (DFT)-based alloy stability model. The model predicts adsorption site stabilities in nanoparticles and connects these site stabilities with catalytic reactivity and selectivity. Strain-based dependencies will increase the model's accuracy for nanoparticles affected by finite-size effects. In addition to the stability of small nanoparticles, strain also influences the heat of adsorption of epitaxially grown metal-on-metal adlayers. In this respect, we successfully benchmark the strain-including alloy stability model with previous experimentally determined trends in the heats of adsorption of Au and Cu adlayers on Pt (111). For these systems, our model predicts stronger bimetallic interactions in the first monolayer than monometallic interactions in the second monolayer. We explicitly quantify the interplay between destabilizing strain effects and the energy gained by forming new metal-metal bonds. While tensile strain in the first Cu monolayer significantly destabilizes the adsorption strength, compressive strain in the first Au monolayer has a minimal impact on the heat of adsorption. Hence, this study introduces and, by comparison with previous experiments, validates an efficient DFT-based approach for strain-engineering the stability, and, in turn, the catalytic performance, of active sites in bimetallic alloys with atomic level resolution.
Collapse
Affiliation(s)
- Verena Streibel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Tej S Choksi
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Affiliation(s)
- Mikkel Jørgensen
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|