1
|
Tian D, Yang Y, Zhang J, Yue Y, Qian G. Synthesis of cordierite using municipal solid waste incineration fly ash as one additive for enhanced catalytic oxidation of volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167420. [PMID: 37774860 DOI: 10.1016/j.scitotenv.2023.167420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is a hazardous waste, which needs various recycling in order to reach "net-zero waste". This work aimed to synthesize cordierite using MSWI fly ash as one additive and investigate influence of the additive on properties of the cordierite. As a result, the cordierite was successfully synthesized when the additive weight ratio was <15 % and the synthesis strategy was universally feasible for 14 kinds of different MSWI fly ashes. As a heat accumulator, the cordierite attained compressive strength of 42.1 MPa, water absorption of 26 %, bulk density of 1.87 g·cm-3, and open porosity of 47 %. After five cycles of thermal impact at 1200 °C, the strength was only decreased by 15 %. These properties were comparable to a commercial cordierite. As a catalyst carrier, after loading Mn and Cu species, the cordierite removed 100 % of toluene at 250 °C. In comparison, a commercial cordierite only got a removal of 34.4 %. The enhanced activity was attributed to co-existing spinel and bytownite as well as imbedded Zn and Cu in the MSWI fly ash-added cordierite. Therefore, this work devotes to hazardous recycling, green development, and cycled economy.
Collapse
Affiliation(s)
- Daoyuan Tian
- Materials Genome Institute, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yimin Yang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China.
| | - Yang Yue
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
2
|
Wei X, Kang J, Gan L, Wang W, Yang L, Wang D, Zhong R, Qi J. Recent Advances in Co 3O 4-Based Composites: Synthesis and Application in Combustion of Methane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1917. [PMID: 37446434 DOI: 10.3390/nano13131917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In recent years, it has been found that adjusting the organizational structure of Co3O4 through solid solution and other methods can effectively improve its catalytic performance for the oxidation of low concentration methane. Its catalytic activity is close to that of metal Pd, which is expected to replace costly noble metal catalysts. Therefore, the in-depth research on the mechanism and methods of Co3O4 microstructure regulation has very important academic value and economic benefits. In this paper, we reviewed the catalytic oxidation mechanism, microstructure regulation mechanism, and methods of nano-Co3O4 on methane gas, which provides reference for the development of high-activity Co3O4-based methane combustion catalysts. Through literature investigation, it is found that the surface energy state of nano-Co3O4 can be adjusted by loading of noble metals, resulting in the reduction of Co-O bond strength, thus accelerating the formation of reactive oxygen species chemical bonds, and improving its catalytic effect. Secondly, the use of metal oxides and non-metallic oxide carriers helps to disperse and stabilize cobalt ions, improve the structural elasticity of Co3O4, and ultimately improve its catalytic performance. In addition, the performance of the catalyst can be improved by adjusting the microstructure of the composite catalyst and optimizing the preparation process. In this review, we summarize the catalytic mechanism and microstructure regulation of nano-Co3O4 and its composite catalysts (embedded with noble metals or combined with metallic and nonmetallic oxides) for methane combustion. Notably, this review delves into the substance of measures that can be used to improve the catalytic performance of Co3O4, highlighting the constructive role of components in composite catalysts that can improve the catalytic capacity of Co3O4. Firstly, the research status of Co3O4 composite catalyst is reviewed in this paper. It is hoped that relevant researchers can get inspiration from this paper and develop high-activity Co3O4-based methane combustion catalyst.
Collapse
Affiliation(s)
- Xinfang Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jiawei Kang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lin Gan
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Wei Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lin Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Dijia Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Upadhyay U, Sireesha S, Gupta S, Sreedhar I, Anitha K. Freeze v/s air-dried alginate-pectin gel beads modified with sodium dodecyl sulphate for enhanced removal of copper ions. Carbohydr Polym 2022; 301:120294. [DOI: 10.1016/j.carbpol.2022.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
|
4
|
In Situ DRIFTS Study of Single-Atom, 2D, and 3D Pt on γ-Al2O3 Nanoflakes and Nanowires for C2H4 Oxidation. Processes (Basel) 2022. [DOI: 10.3390/pr10091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Up to now, a great number of catalysts have been reported that are active in the oxidation of volatile organic compounds (VOCs). However, supported noble-metal catalysts (especially Pt-based catalysts) are still the most excellent ones for this reaction. In this study, Pt species supported on γ-Al2O3 and ranging from single-atom sites to clusters (less than 1 nm) and 1–2 nm nanoparticles were prepared and investigated for oxidizing C2H4. The Pt-loaded γ-Al2O3 nanoflakes (PtAl-NF) and Pt-loaded γ-Al2O3 nanowires (PtAl-NW) were successfully prepared. The samples were characterized using XRD, TEM, XPS, HAADF-STEM, and in situ DRIFTS. Based on in situ DRIFTS, a simple surface reaction mechanism was developed. The stable intermediates CO on single-atom Pt, subnanometer Pt particles, and fully exposed Pt clusters could be explained by the strong binding of CO molecule poisoning Pt sites. Moreover, the oxidation of C2H4 was best achieved by Pt particles that were 1–2 nm in size and the catalytic activity of PtAl-NF was better when it had less Pt. Lastly, the most exposed (110) facets of γ-Al2O3 nanoflakes were more resistant to water than the majorly exposed (100) facets of γ-Al2O3 nanowires.
Collapse
|
5
|
Peng S, Ma Z, Ma J, Wang H, Chen J, Wei H, Li Y, Ao Z, Wang B. Influence of carrier effect on Pd/Al 2O 3 for methane complete catalytic oxidation. Front Chem 2022; 10:978698. [PMID: 36082198 PMCID: PMC9445149 DOI: 10.3389/fchem.2022.978698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pd/Al2O3 catalysts modified by different chemical elements (Mg, Si, Ce, and Zr) were tested for methane (CH4) catalytic combustion, and PdO nanoparticles loaded on modified Al2O3 were systematically studied. These conditions assess the carrier effects of Pd/Al2O3 and acid strength influences on CH4 combustion. We observed carrier effects on activation energy through tuning Pd 3d binding energies (BEs) and on pre-exponential factors (A) through Pd dispersion and acidity on supports. When the BE of Pd 3d5/2 is 337.3 eV, PdO nanoparticles loaded on modified Al2O3 have excellent activity in cracking the C-H bond of CH4, which leads to the lowest activation energy (E a ), regardless of the size effect of the PdO nanoparticle. Furthermore, a theoretical construction that acid sites on catalysts promote the reversible elementary step (2Pd-OH ↔ Pd-O* + Pd* + H2O) right shifts improving the A dependency on the quantity of exposed Pd* and Pd-O*. As a result, Al2O3, as the carrier, not only modifies the electronic characteristics and size of supported PdO nanoparticles but also participates in the reaction process via acid sites on the surface of Al2O3.
Collapse
Affiliation(s)
- Shengpan Peng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Ziran Ma
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Jing Ma
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Hongyan Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Yonglong Li
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| | - Zhimin Ao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Baodong Wang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, China
| |
Collapse
|
6
|
Word Summit "Catalysis Engineering & Technology" (CatET-2019). Top Catal 2021; 64:195-196. [PMID: 33746460 PMCID: PMC7955216 DOI: 10.1007/s11244-021-01416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 11/06/2022]
|