1
|
Valentine M, Butruille D, Achard F, Beach S, Brower-Toland B, Cargill E, Hassebrock M, Rinehart J, Ream T, Chen Y. Simultaneous genetic transformation and genome editing of mixed lines in soybean ( Glycine max) and maize ( Zea mays). ABIOTECH 2024; 5:169-183. [PMID: 38974857 PMCID: PMC11224177 DOI: 10.1007/s42994-024-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00173-5.
Collapse
Affiliation(s)
- Michelle Valentine
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - David Butruille
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Frederic Achard
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Steven Beach
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | | | - Edward Cargill
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Megan Hassebrock
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Jennifer Rinehart
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Thomas Ream
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Yurong Chen
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| |
Collapse
|
2
|
Ye X, Shrawat A, Moeller L, Rode R, Rivlin A, Kelm D, Martinell BJ, Williams EJ, Paisley A, Duncan DR, Armstrong CL. Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1202235. [PMID: 37324676 PMCID: PMC10264787 DOI: 10.3389/fpls.2023.1202235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Transgenic plant production in monocotyledonous species has primarily relied on embryogenic callus induction from both immature and mature embryos as the pathway for plant regeneration. We have efficiently regenerated fertile transgenic wheat plants through organogenesis after Agrobacterium-mediated direct transformation of mechanically isolated mature embryos from field-grown seed. Centrifugation of the mature embryos in the presence of Agrobacterium was found to be essential for efficient T-DNA delivery to the relevant regenerable cells. The inoculated mature embryos formed multiple buds/shoots on high-cytokinin medium, which directly regenerated into transgenic shoots on hormone-free medium containing glyphosate for selection. Rooted transgenic plantlets were obtained within 10-12 weeks after inoculation. Further optimization of this transformation protocol resulted in significant reduction of chimeric plants to below 5%, as indicated by leaf GUS staining and T1 transgene segregation analysis. Direct transformation of wheat mature embryos has substantial advantages over traditional immature embryo-based transformation systems, including long-term storability of the mature dry explants, scalability, and greatly improved flexibility and consistency in transformation experiments.
Collapse
|
3
|
Liang D, Liu Y, Li C, Wen Q, Xu J, Geng L, Liu C, Jin H, Gao Y, Zhong H, Dawson J, Tian B, Barco B, Su X, Dong S, Li C, Elumalai S, Que Q, Jepson I, Shi L. CRISPR/LbCas12a-Mediated Genome Editing in Soybean. Methods Mol Biol 2023; 2653:39-52. [PMID: 36995618 DOI: 10.1007/978-1-0716-3131-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Currently methods for generating soybean edited lines are time-consuming, inefficient, and limited to certain genotypes. Here we describe a fast and highly efficient genome editing method based on CRISPR-Cas12a nuclease system in soybean. The method uses Agrobacterium-mediated transformation to deliver editing constructs and uses aadA or ALS genes as selectable marker. It only takes about 45 days to obtain greenhouse-ready edited plants at higher than 30% transformation efficiency and 50% editing rate. The method is applicable to other selectable markers including EPSPS and has low transgene chimera rate. The method is also genotype-flexible and has been applied to genome editing of several elite soybean varieties.
Collapse
Affiliation(s)
- Dawei Liang
- Syngenta Biotechnology China Co., Ltd., Beijing, China.
| | - Yubo Liu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Chao Li
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Qin Wen
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Jianping Xu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Lizhao Geng
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Chunxia Liu
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Huaibing Jin
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Yang Gao
- Syngenta Biotechnology China Co., Ltd., Beijing, China
| | - Heng Zhong
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - John Dawson
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Bin Tian
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Brenden Barco
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Xiujuan Su
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Shujie Dong
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Changbao Li
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Sivamani Elumalai
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Ian Jepson
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Liang Shi
- Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Ye X, Vaghchhipawala Z, Williams EJ, Fu C, Liu J, Lu F, Hall EL, Guo SX, Frank L, Gilbertson LA. Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. PLANT CELL REPORTS 2023; 42:45-55. [PMID: 36316413 DOI: 10.1007/s00299-022-02935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Efficient selectable marker gene autoexcision in transgenic plants of soybean, cotton, canola, and maize is achieved by effective Cre recombinase expression. Selectable marker genes are often required for efficient generation of transgenic plants in plant transformation but are not desired once the transgenic events are obtained. We have developed Cre/loxP autoexcision systems to remove selectable marker genes in soybean, cotton, canola and maize. We tested a set of vectors with diverse promoters and identified promising promoters to drive cre expression for each of the four crops. We evaluated both the efficiency of generating primary transgenic events with low transgene copy numbers, and the frequency of marker-free progeny in the next generation. The best performing vectors gave no obvious decrease in the transformation frequency in each crop and generated homozygous marker-free progeny in the next generation. We found that effective expression of Cre recombinase for marker gene autoexcision can be species dependent. Among the vectors tested, the best autoexcision frequency (41%) in soybean transformation came from using the soybean RSP1 promoter for cre expression. The cre gene expressed by soybean RSP1 promoter with an Arabidopsis AtpE intron delivered the best autoexcision frequency (69%) in cotton transformation. The cre gene expressed by the embryo-specific eUSP88 promoter from Vicia faba conferred the best marker excision frequency (32%) in canola transformation. Finally, the cre gene expressed by the rice CDC45-1 promoter resulted in 44% autoexcision in maize transformation. The Cre/loxP recombinase system enables the generation of selectable marker-free transgenic plants for commercial product development in four agriculturally important crops and provides further improvement opportunities for more specific and better marker excision efficiency.
Collapse
Affiliation(s)
- Xudong Ye
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA.
| | | | - Edward J Williams
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
- Wisconsin Crop Innovation Center, 8520 University Green, Middleton, WI, 53562, USA
| | - Changlin Fu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Jinyuan Liu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Fengming Lu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Erin L Hall
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Shirley X Guo
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - LaRee Frank
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | | |
Collapse
|
5
|
Ye X, Shrawat A, Williams E, Rivlin A, Vaghchhipawala Z, Moeller L, Kumpf J, Subbarao S, Martinell B, Armstrong C, Saltarikos MA, Somers D, Chen Y. Commercial scale genetic transformation of mature seed embryo explants in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1056190. [PMID: 36523626 PMCID: PMC9745677 DOI: 10.3389/fpls.2022.1056190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel, efficient maize genetic transformation system was developed using Agrobacterium-mediated transformation of embryo explants from mature seeds. Seeds from field grown plants were sterilized and crushed to isolate embryo explants consisting of the coleoptile, leaf primordia, and shoot apical meristem which were then purified from the ground seed bulk preparation. The infection of relevant tissues of seed embryo explants (SEEs) by Agrobacterium was improved by the centrifugation of the explants. Transgenic plants were obtained by multiple bud induction on high cytokinin media, followed by plant regeneration on hormone-free medium. Three different selectable markers (cp4 epsps, aadA, and nptII) were successfully used for producing transgenic plants. Stable integration of transgenes in the maize genome was demonstrated by molecular analyses and germline transmission of the inserted transgenes to the next generation was confirmed by pollen segregation and progeny analysis. Phenotypic evidence for chimeric transgenic tissue was frequently observed in initial experiments but was significantly reduced by including a second bud induction step with optimized cytokinin concentration. Additional improvements, including culturing explants at an elevated temperature during bud induction led to the development of a revolutionary system for efficient transgenic plant production and genome editing. To our knowledge, this is the first report of successful transgenic plant regeneration through Agrobacterium-mediated transformation of maize mature SEEs. This system starts with mature seed that can be produced in large volumes and the SEEs explants are storable. It has significant advantages in terms of scalability and flexibility over methods that rely on immature explants.
Collapse
Affiliation(s)
- Xudong Ye
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | - Ashok Shrawat
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | - Edward Williams
- Agracetus Campus, Monsanto Company, Middleton, WI, United States
| | - Anatoly Rivlin
- Agracetus Campus, Monsanto Company, Middleton, WI, United States
| | | | - Lorena Moeller
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | - Jennifer Kumpf
- Mystic Research, Monsanto Company, Mystic, CT, United States
| | - Shubha Subbarao
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | - Brian Martinell
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | - Charles Armstrong
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| | | | - David Somers
- Mystic Research, Monsanto Company, Mystic, CT, United States
| | - Yurong Chen
- Plant Biotechnology, Bayer Crop Science, W. St. Louis, MO, United States
| |
Collapse
|
6
|
Sahab S, Taylor N. Studies on Pure Mlb ® (Multiple Left Border) Technology and Its Impact on Vector Backbone Integration in Transgenic Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:816323. [PMID: 35185986 PMCID: PMC8855067 DOI: 10.3389/fpls.2022.816323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Imperfect T-DNA processing is common during Agrobacterium-mediated transformation, which integrates vector backbone sequences into the plant genome. However, regulatory restrictions prevent such transgenic plants from being developed for commercial deployment. The binary vector pCAMBIA2300 was modified by incorporating multiple left border (Mlb®) repeats and was tested in BY2 cells, tobacco, and cassava plants to address this issue. PCR analyses confirmed a twofold increase in the vector backbone free events in the presence of triple left borders in all three systems tested. Vector backbone read-through past the LB was reduced significantly; however, the inclusion of Mlbs® did not effectively address the beyond right border read-through. Also, Mlbs® increased the frequency of single-copy and vector backbone free events (clean events) twice compared to a single LB construct. Here, we briefly narrate the strength and limitations of using Mlb® technology and reporter genes in reducing the vector backbone transfer in transgenic events.
Collapse
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Nigel Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
7
|
Roldan MB, Cousins G, Muetzel S, Zeller WE, Fraser K, Salminen JP, Blanc A, Kaur R, Richardson K, Maher D, Jahufer Z, Woodfield DR, Caradus JR, Voisey CR. Condensed Tannins in White Clover ( Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro. FRONTIERS IN PLANT SCIENCE 2022; 12:777354. [PMID: 35069633 PMCID: PMC8774771 DOI: 10.3389/fpls.2021.777354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 05/29/2023]
Abstract
Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p ≤0.01) and ammonia production by 60% (p ≤ 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo.
Collapse
Affiliation(s)
- Marissa B. Roldan
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Greig Cousins
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Stefan Muetzel
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Wayne E. Zeller
- ARS-USDA, US Dairy Forage Research Center, Madison, WI, United States
| | - Karl Fraser
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Alexia Blanc
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
- AgroParis Tech, Paris, France
| | - Rupinder Kaur
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Kim Richardson
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Dorothy Maher
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Zulfi Jahufer
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
8
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
9
|
Sardesai N, Foulk S, Chen W, Wu H, Etchison E, Gupta M. Coexpression of octopine and succinamopine Agrobacterium virulence genes to generate high quality transgenic events in maize by reducing vector backbone integration. Transgenic Res 2018; 27:539-550. [PMID: 30293127 DOI: 10.1007/s11248-018-0097-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Agrobacterium-mediated transformation is a complex process that is widely utilized for generating transgenic plants. However, one of the major concerns of this process is the frequent presence of undesirable T-DNA vector backbone sequences in the transgenic plants. To mitigate this deficiency, a ternary strain of A. tumefaciens was modified to increase the precision of T-DNA border nicking such that the backbone transfer is minimized. This particular strain supplemented the native succinamopine VirD1/VirD2 of EHA105 with VirD1/VirD2 derived from an octopine source (pTi15955), the same source as the binary T-DNA borders tested here, residing on a ternary helper plasmid containing an extra copy of the succinamopine VirB/C/G operons and VirD1. Transformation of maize immature embryos was carried out with two different test constructs, pDAB101556 and pDAB111437, bearing the reporter YFP gene and insecticidal toxin Cry1Fa gene, respectively, contained in the VirD-supplemented and regular control ternary strains. Molecular analyses of ~ 700 transgenic events revealed a significant 2.6-fold decrease in events containing vector backbone sequences, from 35.7% with the control to 13.9% with the VirD-supplemented strain for pDAB101556 and from 24.9% with the control to 9.3% with the VirD-supplemented strain for pDAB111437, without compromising transformation efficiency. In addition, while the number of single copy events recovered was similar, there was a 24-26% increase in backbone-free events with the VirD-supplemented strain compared to the control strain. Thus, supplementing existing VirD1/VirD2 genes in Agrobacterium, to recognize diverse T-DNA borders, proved to be a useful tool to increase the number of high quality events in maize.
Collapse
Affiliation(s)
- Nagesh Sardesai
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA.
| | - Stephen Foulk
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Wei Chen
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Huixia Wu
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Emily Etchison
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Manju Gupta
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| |
Collapse
|
10
|
Ye X, Chen Y, Wan Y, Hong YJ, Ruebelt MC, Gilbertson LA. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation. PLANT CELL REPORTS 2016; 35:601-11. [PMID: 26650837 DOI: 10.1007/s00299-015-1906-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells.
Collapse
Affiliation(s)
- Xudong Ye
- Monsanto Company, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA.
| | - Yurong Chen
- Agracetus Campus, Monsanto Company, 8520 University Green, P. O. Box 620999, Middleton, WI, 53562, USA
| | - Yuechun Wan
- Monsanto Company, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Yun-Jeong Hong
- Calgene Campus, Monsanto Company, 1920 Fifth St, Davis, CA, 95616, USA
| | - Martin C Ruebelt
- Calgene Campus, Monsanto Company, 1920 Fifth St, Davis, CA, 95616, USA
| | | |
Collapse
|
11
|
Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 2015; 24:1017-27. [PMID: 26338266 DOI: 10.1007/s11248-015-9902-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023]
Abstract
Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.
Collapse
Affiliation(s)
| | - Xianggan Li
- Syngenta Biotechnology China Co. Ltd, Beijing, People's Republic of China
| | | | - Yoshimi Barron
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Anna Prairie
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - David Bradley
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Michele Doyle
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Danzer J, Mellott E, Bui AQ, Le BH, Martin P, Hashimoto M, Perez-Lesher J, Chen M, Pelletier JM, Somers DA, Goldberg RB, Harada JJ. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development. PLANT PHYSIOLOGY 2015; 168:1025-35. [PMID: 25963149 PMCID: PMC4741349 DOI: 10.1104/pp.15.00432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/30/2015] [Indexed: 05/18/2023]
Abstract
We used an RNA interference screen to assay the function of 53 transcription factor messenger RNAs (mRNAs) that accumulate specifically within soybean (Glycine max) seed regions, subregions, and tissues during development. We show that basic helix-loop-helix (bHLH) transcription factor genes represented by Glyma04g41710 and its paralogs are required for the formation of stoma in leaves and stomatal precursor complexes in mature embryo cotyledons. Phylogenetic analysis indicates that these bHLH transcription factor genes are orthologous to Arabidopsis (Arabidopsis thaliana) SPEECHLESS (SPCH) that initiate asymmetric cell divisions in the leaf protoderm layer and establish stomatal cell lineages. Soybean SPCH (GmSPCH) mRNAs accumulate primarily in embryo, seedling, and leaf epidermal layers. Expression of Glyma04g41710 under the control of the SPCH promoter rescues the Arabidopsis spch mutant, indicating that Glyma04g41710 is a functional ortholog of SPCH. Developing soybean embryos do not form mature stoma, and stomatal differentiation is arrested at the guard mother cell stage. We analyzed the accumulation of GmSPCH mRNAs during soybean seed development and mRNAs orthologous to MUTE, FAMA, and inducer of C-repeat/dehydration responsive element-binding factor expression1/scream2 that are required for stoma formation in Arabidopsis. The mRNA accumulation patterns provide a potential explanation for guard mother cell dormancy in soybean embryos. Our results suggest that variation in the timing of bHLH transcription factor gene expression can explain the diversity of stomatal forms observed during plant development.
Collapse
Affiliation(s)
- John Danzer
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Eric Mellott
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Anhthu Q Bui
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Brandon H Le
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Patrick Martin
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Meryl Hashimoto
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Jeanett Perez-Lesher
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Min Chen
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Julie M Pelletier
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - David A Somers
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - Robert B Goldberg
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| | - John J Harada
- Monsanto Company, Agracetus Campus, Middleton, Wisconsin 53562 (J.D., E.M., P.M., J.P.-L., D.A.S);Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095 (A.Q.B., B.H.L., M.C., R.B.G.); andDepartment of Plant Biology, University of California, Davis, California 95616 (M.H., J.M.P., J.J.H.)
| |
Collapse
|
13
|
Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl Biochem Biotechnol 2015; 175:2266-87. [PMID: 25480345 DOI: 10.1007/s12010-014-1360-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023]
Abstract
Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.
Collapse
Affiliation(s)
- Muthukrishnan Arun
- Department of Biotechnology & Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024,, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MDM. Maize transformation technology development for commercial event generation. FRONTIERS IN PLANT SCIENCE 2014; 5:379. [PMID: 25140170 PMCID: PMC4122164 DOI: 10.3389/fpls.2014.00379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 05/22/2023]
Abstract
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Collapse
Affiliation(s)
- Qiudeng Que
- Syngenta Biotechnology, Inc.Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen Y, Rivlin A, Lange A, Ye X, Vaghchhipawala Z, Eisinger E, Dersch E, Paris M, Martinell B, Wan Y. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). PLANT CELL REPORTS 2014; 33:153-64. [PMID: 24129847 DOI: 10.1007/s00299-013-1519-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 05/03/2023]
Abstract
Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible. We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7-8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.
Collapse
Affiliation(s)
- Yurong Chen
- Monsanto Company, Agracetus Campus, 8520 University Green, P. O. Box 620999, Middleton, WI, 53562, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mrízová K, Jiskrová E, Vyroubalová Š, Novák O, Ohnoutková L, Pospíšilová H, Frébort I, Harwood WA, Galuszka P. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One 2013; 8:e79029. [PMID: 24260147 PMCID: PMC3829838 DOI: 10.1371/journal.pone.0079029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/17/2013] [Indexed: 01/07/2023] Open
Abstract
Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX) and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK) plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs.
Collapse
Affiliation(s)
- Katarína Mrízová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Eva Jiskrová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Šárka Vyroubalová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulatory, Palacký University and Institute of Experimental Botany, Olomouc, Czech Republic
| | - Ludmila Ohnoutková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Hana Pospíšilová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Wendy A. Harwood
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
17
|
Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 2013; 32:137-57. [PMID: 24084493 DOI: 10.1016/j.biotechadv.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.
Collapse
|
18
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
Ye X, Williams EJ, Shen J, Johnson S, Lowe B, Radke S, Strickland S, Esser JA, Petersen MW, Gilbertson LA. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res 2011; 20:773-86. [PMID: 21042934 DOI: 10.1007/s11248-010-9458-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Single transgene copy, vector backbone-free transgenic crop plants are highly desired for functional genomics and many biotechnological applications. We demonstrate that binary vectors that use a replication origin derived from the Ri plasmid of Agrobacterium rhizogenes (oriRi) increase the frequency of single copy, backbone-free transgenic plants in Agrobacterium tumefaciens mediated transformation of soybean, canola, and corn, compared to RK2-derived binary vectors (RK2 oriV). In large scale soybean transformation experiments, the frequency of single copy, backbone-free transgenic plants was nearly doubled in two versions of the oriRi vectors compared to the RK2 oriV control vector. In canola transformation experiments, the oriRi vector produced more single copy, backbone-free transgenic plants than did the RK2 oriV vector. In corn transformation experiments, the frequency of single copy backbone-free transgenic plants was also significantly increased when using the oriRi vector, although the transformation frequency dropped. These results, derived from transformation experiments using three crops, indicate the advantage of oriRi vectors over RK2 oriV binary vectors for the production of single copy, backbone-free transgenic plants using Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Xudong Ye
- Agracetus Campus, Monsanto Company, 8520 University Green, P. O. Box 620999, Middleton, WI 53562, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies.
Collapse
|
21
|
Confalonieri M, Borghetti R, Macovei A, Testoni C, Carbonera D, Fevereiro MPS, Rommens C, Swords K, Piano E, Balestrazzi A. Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. PLANT CELL REPORTS 2010; 29:1013-1021. [PMID: 20571798 DOI: 10.1007/s00299-010-0887-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
In the present work, Agrobacterium tumefaciens-mediated genetic transformation of the model legume Medicago truncatula Gaertn. (barrel medic) was carried out using the pSIM843 vector that contains a Medicago-derived transfer DNA, delineated by a 25-bp sequence homologous to bacterial T-DNA borders. The transfer DNA contains an expression cassette for the nptII (neomycin phosphotransferase) gene and is flanked by an expression cassette for the backbone integration marker gene ipt (isopentenyl transferase). Our results demonstrate that the Medicago-derived RB-like elements efficiently support DNA mobilization from A. tumefaciens to M. truncatula. Kanamycin-resistant shoots with normal phenotype and ipt-shooty lines were recovered at a frequency of 11.7 and 7.8%, respectively. Polymerase chain reaction (PCR) analyses demonstrated that 44.4% of the independent transgenic lines were backbone-free and evidenced the occurrence of backbone-transfer events.
Collapse
Affiliation(s)
- Massimo Confalonieri
- C.R.A.-Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, viale Piacenza 29, 26900, Lodi, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yemets AI, Radchuk VV, Pakhomov AV, Blume YB. Biolistic transformation of soybean using a new selectable marker gene conferring resistance to dinitroanilines. CYTOL GENET+ 2008. [DOI: 10.3103/s0095452708060108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|