1
|
Chen W, Zhong Y, Yuan Y, Zhu M, Hu W, Liu N, Xing D. New insights into the suppression of inflammation and lipid accumulation by JAZF1. Genes Dis 2023; 10:2457-2469. [PMID: 37554201 PMCID: PMC10404878 DOI: 10.1016/j.gendis.2022.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Atherosclerosis is one of the leading causes of disease and death worldwide. The identification of new therapeutic targets and agents is critical. JAZF1 is expressed in many tissues and is found at particularly high levels in adipose tissue (AT). JAZF1 suppresses inflammation (including IL-1β, IL-4, IL-6, IL-8, IL-10, TNFα, IFN-γ, IAR-20, COL3A1, laminin, and MCP-1) by reducing NF-κB pathway activation and AT immune cell infiltration. JAZF1 reduces lipid accumulation by regulating the liver X receptor response element (LXRE) of the SREBP-1c promoter, the cAMP-response element (CRE) of HMGCR, and the TR4 axis. LXRE and CRE sites are present in many cytokine and lipid metabolism gene promoters, which suggests that JAZF1 regulates these genes through these sites. NF-κB is the center of the JAZF1-mediated inhibition of the inflammatory response. JAZF1 suppresses NF-κB expression by suppressing TAK1 expression. Interestingly, TAK1 inhibition also decreases lipid accumulation. A dual-targeting strategy of NF-κB and TAK1 could inhibit both inflammation and lipid accumulation. Dual-target compounds (including prodrugs) 1-5 exhibit nanomolar inhibition by targeting NF-κB and TAK1, EGFR, or COX-2. However, the NF-κB suppressing activity of these compounds is relatively low (IC50 > 300 nM). Compounds 6-14 suppress NF-κB expression with IC50 values ranging from 1.8 nM to 38.6 nM. HS-276 is a highly selective, orally bioavailable TAK1 inhibitor. Combined structural modifications of compounds using a prodrug strategy may enhance NF-κB inhibition. This review focused on the role and mechanism of JAZF1 in inflammation and lipid accumulation for the identification of new anti-atherosclerotic targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yingjie Zhong
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Yang Yuan
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Meng Zhu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Wenchao Hu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Ning Liu
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Dongming Xing
- Cancer Institute, Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
3
|
Wang Q, Dong Y, Wang H. microRNA-19b-3p-containing extracellular vesicles derived from macrophages promote the development of atherosclerosis by targeting JAZF1. J Cell Mol Med 2021; 26:48-59. [PMID: 34910364 PMCID: PMC8742201 DOI: 10.1111/jcmm.16938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis has been regarded as a major contributor to cardiovascular disease. The role of extracellular vesicles (EVs) in the treatment of atherosclerosis has been increasingly reported. In this study, we set out to investigate the effect of macrophages‐derived EVs (M‐EVs) containing miR‐19b‐3p in the progression of atherosclerosis, with the involvement of JAZF1. Following isolation of EVs from macrophages, the M‐EVs were induced with ox‐low density lipoprotein (LDL) (ox‐LDL‐M‐EVs), and co‐cultured with vascular smooth muscle cells (VSMCs). RT‐qPCR and western blot assay were performed to determine the expression of miR‐19b‐3p and JAZF1 in M‐EVs and in VSMCs. Lentiviral infection was used to overexpress or knock down miR‐19b‐3p. EdU staining and scratch test were conducted to examine VSMC proliferation and migration. Dual‐luciferase gene reporter assay was performed to examine the relationship between miR‐19b‐3p and JAZF1. In order to explore the role of ox‐LDL‐M‐EVs carrying miR‐19b‐3p in atherosclerotic lesions in vivo, a mouse model of atherosclerosis was established through high‐fat diet induction. M‐EVs were internalized by VSMCs. VSMC migration and proliferation were promoted by ox‐LDL‐M‐EVs. miR‐19b‐3p displayed upregulation in ox‐LDL‐M‐EVs. miR‐19b‐3p was transferred by M‐EVs into VSMCs, thereby promoting VSMC migration and proliferation. mir‐19b‐3p targeted JAZF1 to decrease its expression in VSMCs. Atherosclerosis lesions were aggravated by ox‐LDL‐M‐EVs carrying miR‐19b‐3p in ApoE−/− mice. Collectively, this study demonstrates that M‐EVs containing miR‐19b‐3p accelerate migration and promotion of VSMCs through targeting JAZF1, which promotes the development of atherosclerosis.
Collapse
Affiliation(s)
- Qingshan Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Yuandi Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haiyang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Park SJ, Kwon W, Park S, Jeong J, Kim D, Jang S, Kim SY, Sung Y, Kim MO, Choi SK, Ryoo ZY. Jazf1 acts as a regulator of insulin-producing β-cell differentiation in induced pluripotent stem cells and glucose homeostasis in mice. FEBS J 2021; 288:4412-4427. [PMID: 33555104 DOI: 10.1111/febs.15751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/02/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Genetic susceptibility of type 2 diabetes and Juxtaposed with another zinc finger protein 1 (Jazf1) has been reported; however, the precise role of Jazf1 in metabolic processes remains elusive. In this study, using Jazf1-knockout (KO)-induced pluripotent stem cells (iPSC), pancreatic beta cell line MIN6 cells, and Jazf-1 heterozygous KO (Jazf1+/- ) mice, the effect of Jazf1 on gradual differentiation was investigated. We checked the alterations of the genes related with β-cell specification, maturation, and insulin release against glucose treatment by the gain and loss of the Jazf1 gene in the MIN6 cells. Because undifferentiated Jazf1-KO iPSC were not significantly different from wild-type (WT) iPSC, the size and endoderm marker expression after embryoid body (EB) and teratoma formation were investigated. Compared to EB and teratomas formed with WT iPSC, the EB and teratomas from with Jazf1-KO iPSC were smaller, and in teratomas, the expression of proliferation markers was reduced. Moreover, the expression of the gene sets for β-cell differentiation and the levels of insulin and C-peptide secreted by insulin precursor cells were notably reduced in β-cells differentiated from Jazf1-KO iPSC compared with those differentiated from WT iPSC. A comparison of Jazf1+/- and WT mice showed that Jazf1+/- mice had lower levels of serum insulin, pancreatic insulin expression, and decreased pancreatic β-cell size, which resulted in defects in the glucose homeostasis. These findings suggest that Jazf1 plays a pivotal role in the differentiation of β-cells and glucose homeostasis.
Collapse
Affiliation(s)
- Si Jun Park
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Wookbong Kwon
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Division of Biotechnology, DGIST, Daegu, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Jain Jeong
- Core Protein Resources Center, DGIST, Daegu, Korea.,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dongjun Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Soyoung Jang
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Si-Yong Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Yonghun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Korea.,Core Protein Resources Center, DGIST, Daegu, Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
5
|
Huang L, Cai Y, Luo Y, Xiong D, Hou Z, Lv J, Zeng F, Yang Y, Cheng X. JAZF1 Suppresses Papillary Thyroid Carcinoma Cell Proliferation and Facilitates Apoptosis via Regulating TAK1/NF-κB Pathways. Onco Targets Ther 2019; 12:10501-10514. [PMID: 31819531 PMCID: PMC6897071 DOI: 10.2147/ott.s230597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Juxtaposed with another zinc finger gene 1 (JAZF1) is involved in gluconeogenesis, insulin sensitivity, cell differentiation, lipid metabolism and inflammation, but its role in carcinoma remains inexplicit. Patients and methods We explored the JAZF1 expression in human papillary thyroid cancer (PTC) tissues, adjacent normal thyroid tissues and nodular goitre tissues, as well as Ki67 expression in PTC tissues, using immunohistochemistry staining. Western blotting and RT-qPCR were performed to explore the JAZF1 expression levels in Nthy-ori 3–1, BCPAP and TPC-1 cells. BCPAP cells overexpressing JAZF1 were constructed using an Adv-JAZF1-GFP recombinant adenovirus vector. Next, the cell proliferation assay, colony formation assay, cell cycle analysis, apoptosis and immunofluorescence were performed. The mRNA expression level of nuclear factor-κB p65 (NF-κB p65) was examined using RT-qPCR. The expression of Bcl-2, Bax, transforming growth factor beta-activated kinase 1 (TAK1), NF-κB p65 and NF-κB p-p65 were examined using Western blotting. Results The expression of JAZF1 in human PTC tissues was downregulated compared with adjacent thyroid tissues or nodular goitre. Additionally, JAZF1 expression was associated with the location and lymph node metastasis of PTC. The expression level of JAZF1 had a negative correlation with Ki67 labelling index (LI). Compared to Nthy-ori 3–1 cells and TPC-1 cells, BCPAP cells expressed the lowest JAZF1. JAZF1 overexpressed significantly inhibited proliferation, caused G0/G1 cell cycle arrest and promoted apoptosis in BCPAP cells. Furthermore, JAZF1 overexpressed in BCPAP cells clearly upregulated the expression level of Bax protein, whereas decreased the expression of Bcl-2, TAK1, NF-κB but did not affect the mRNA or protein expression level of NF-κB p65. Conclusion JAZF1 inhibits proliferation and induces apoptosis in BCPAP cells by suppressing the activation of TAK1/NF-κB signalling pathways, suggesting that JAZF1 may serve as a reliable molecular marker in PTC.
Collapse
Affiliation(s)
- Liangliang Huang
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Yuhuai Cai
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Yi Luo
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Daigang Xiong
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Zeyu Hou
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Junyuan Lv
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Feng Zeng
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| | - Yan Yang
- Department of Clinical Laboratory, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China.,College of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Xiaoming Cheng
- Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical University, ZunYi, Guizhou 563003, People's Republic of China
| |
Collapse
|
6
|
Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 2019; 35:228-238. [DOI: 10.1177/0748233718824911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a typical endocrine-disrupting chemical and reproductive toxicant. Although previous studies have attempted to describe the mechanism by which DEHP exposure results in reproductive dysfunction, few studies focused on puberty, a critical period of reproductive development, and the increased susceptibility to injury in adolescents. To elucidate the mechanism underpinning the testicular effects of DEHP in puberty, we sought to investigate the JAZF1/TR4 pathway in the testes of pubertal rats. Specifically, we focused on the role of the JAZF1/TR4 pathway in male reproduction, including the genes JAZF1, TR4, Sperm 1, and Cyclin A1. In the present study, rats were exposed to increasing concentrations of DEHP (0, 250, 500, and 1000 mg/kg/day) by oral gavages for 30 days. Then we assayed testicular zinc and oxidative stress levels. Our results indicated that DEHP exposure could lead to oxidative stress and decrease the contents of testicular zinc. Additionally, significant morphological changes and cell apoptosis were observed in testes exposed to DEHP, as identified by hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase-mediated nick and labeling assay. By measuring the expression levels of the above relevant genes by qPCR, we found the DEHP-induced increased expression of JAZF1 and decreased expression of TR4, Sperm 1, and Cyclin A1. Therefore, we have demonstrated that in vivo exposure to DEHP might induce reproductive toxicity in pubertal male rats through the JAZF1/TR4 pathway and oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Guo-Qing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Shen-Zhou Cheng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - You Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Na Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Dai
- Wuhan Centers for Disease Prevention and Control, Wuhan, People’s Republic of China
| | - Da-Yi Zhang
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
JAZF1 Inhibits Adipose Tissue Macrophages and Adipose Tissue Inflammation in Diet-Induced Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4507659. [PMID: 29765984 PMCID: PMC5885486 DOI: 10.1155/2018/4507659] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022]
Abstract
Background Juxtaposed with another zinc finger gene 1 (JAZF1) affects gluconeogenesis, insulin sensitivity, lipid metabolism, and inflammation, but its exact role in chronic inflammation remains unclear. This study aimed to examine JAZF1 overexpression in vivo on adipose tissue macrophages (ATMs). Methods Mouse models of high-fat diet- (HFD-) induced insulin resistance were induced using C57BL/6J and JAZF1-overexpressing (JAZF1-OX) mice. The mice were randomized (8–10/group) to C57BL/6J mice fed regular diet (RD) (NC group), C57BL/6J mice fed HFD (HF group), JAZF1-OX mice fed RD (NJ group), and JAZF1-OX mice fed HFD (HJ group). Adipose tissue was harvested 12 weeks later. ATMs were evaluated by flow cytometry. Inflammatory markers were evaluated by ELISA. Results JAZF1-OX mice had lower blood lipids, blood glucose, body weight, fat weight, and inflammatory markers compared with HF mice (all P < 0.05). JAZF1 overexpression decreased ATM number and secretion of proinflammatory cytokines. JAZF1 overexpression decreased total CD4+ T cells, active T cells, and memory T cells and increased Treg cells. JAZF1 overexpression downregulated IFN-γ and IL-17 levels and upregulated IL-4 levels. JAZF1 overexpression decreased MHCII, CD40, and CD86 in total ATM, CD11c+ ATM, and CD206+ ATM. Conclusions JAZF1 limits adipose tissue inflammation by limiting macrophage populations and restricting their antigen presentation function.
Collapse
|
8
|
Sung Y, Park S, Park SJ, Jeong J, Choi M, Lee J, Kwon W, Jang S, Lee MH, Kim DJ, Liu K, Kim SH, Lee JH, Ha YS, Kwon TG, Lee S, Dong Z, Ryoo ZY, Kim MO. Jazf1 promotes prostate cancer progression by activating JNK/Slug. Oncotarget 2017; 9:755-765. [PMID: 29416651 PMCID: PMC5787507 DOI: 10.18632/oncotarget.23146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
Juxtaposed with another zinc finger protein 1 (Jazf1) is a zinc finger protein and is known to affect both prostate cancer and type 2 diabetes. Jazf1 inhibits testicular nuclear receptor 4 (TR4) activation through protein-protein interaction, which results in weight loss and alleviates diabetes. However, the role of Jazf1 in prostate cancer is still poorly understood. Hence, we investigated whether the expression of Jazf1 is associated with prostate cancer progression. We confirmed the upregulation of Jazf1 expression in human prostate tissue samples. In addition, using Jazf1 overexpressing prostate cancer cell lines, DU145 and LNCaP, we found Jazf1 promoted cell proliferation and colony formation ability. We also observed that Jazf1 dramatically enhanced cell migration and invasion in transwell assays. Additionally, we checked the upregulation of vimentin and downregulation of E-cadherin expression in Jazf1-overexpressing DU145 and LNCaP cells. Moreover, we found that Slug, which is known to be regulated by JNK/c-Jun phosphorylation, was upregulated in the microarray analysis of two prostate cancer cell lines. Jazf1 promotes the phosphorylation of JNK/c-Jun, likely promoting cell proliferation and invasion through Slug. In a xenograft model, tumors overexpressing Jazf1 were larger than control tumors, and tumors with decreased Jazf1 were smaller. These data indicated that Jazf1 enhances prostate cancer progression and metastasis via regulating JNK/Slug signaling. Taken together, these results suggest that Jazf1 plays an important role in both androgen dependent and independent prostate cancer.
Collapse
Affiliation(s)
- Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Song Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea.,Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Sung-Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Dalseo-gu, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Medical Center, Buk-gu, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, Kyungpook National University Medical Center, Buk-gu, Daegu, Korea
| | - Sanggyu Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, NE, Austin, Minnesota, USA
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| |
Collapse
|
9
|
Sicko RJ, Browne ML, Rigler SL, Druschel CM, Liu G, Fan R, Romitti PA, Caggana M, Kay DM, Brody LC, Mills JL. Genetic Variants in Isolated Ebstein Anomaly Implicated in Myocardial Development Pathways. PLoS One 2016; 11:e0165174. [PMID: 27788187 PMCID: PMC5082909 DOI: 10.1371/journal.pone.0165174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/08/2016] [Indexed: 01/21/2023] Open
Abstract
Ebstein anomaly (EA) is a rare heart defect in which the tricuspid valve is malformed and displaced. The tricuspid valve abnormalities can lead to backflow of blood from the right ventricle to the right atrium, preventing proper circulation of blood to the lungs. Although the etiology of EA is largely unresolved, increased prevalence of EA in those with a family history of congenital heart disease suggests EA has a genetic component. Copy number variants (CNVs) are a major source of genetic variation and have been implicated in a range of congenital heart defect phenotypes. We performed a systematic, genome-wide search for CNVs in 47 isolated EA cases using genotyping microarrays. In addition, we used a custom HaloPlex panel to sequence three known EA genes and 47 candidate EA genes. We identified 35 candidate CNVs in 24 (51%) EA cases. Rare sequence variants in genes associated with cardiomyopathy were identified in 11 (23%) EA cases. Two CNVs near the transcriptional repressor HEY1, a member of the NOTCH signaling pathway, were identified in three unrelated cases. All other candidate CNVs were each identified in a single case. At least 11 of 35 candidate CNVs include genes involved in myocardial development or function, including multiple genes in the BMP signaling pathway. We identified enrichment of gene sets involved in histone modification and cardiomyocyte differentiation, supporting the involvement of the developing myocardium in the etiology of EA. Gene set enrichment analysis also identified ribosomal RNA processing, a potentially novel pathway of altered cardiac development in EA. Our results suggest an altered myocardial program may contribute to abnormal tricuspid valve development in EA. Future studies should investigate abnormal differentiation of cardiomyocytes as a potential etiological factor in EA.
Collapse
Affiliation(s)
- Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Marilyn L. Browne
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, United States of America
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, United States of America
| | - Shannon L. Rigler
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- Department of Neonatology, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Charlotte M. Druschel
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, United States of America
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, United States of America
| | - Gang Liu
- Congenital Malformations Registry, New York State Department of Health, Albany, New York, United States of America
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lawrence C. Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Li X, Yang M, Wang H, Jia Y, Yan P, Boden G, Yang G, Li L. Overexpression of JAZF1 protected ApoE-deficient mice from atherosclerosis by inhibiting hepatic cholesterol synthesis via CREB-dependent mechanisms. Int J Cardiol 2014; 177:100-10. [PMID: 25499349 DOI: 10.1016/j.ijcard.2014.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/12/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
Abstract
Genome wide association studies have suggested an association of Juxtaposed with another zinc finger gene 1(JAZF1) with type 2 diabetes mellitus (T2DM). As an inhibitor of the TAK1/TR4 signaling pathway, JAZF1 has been shown to be involved in gluconeogenesis, lipid metabolism and insulin sensitivity. However, its role in insulin resistance and atherosclerosis in vivo remains unknown. The present study was designed to investigate in vivo the impact of JAZF1 on insulin resistance-associated dyslipidemia and atherosclerosis. Adenovirus-mediated JAZF1 overexpression was used to characterize the role of JAZF1 in the regulation of lipid metabolism and the development of atherosclerosis in normal chow- or HFD-fed ApoE KO mice. Insulin sensitivity was examined by EHC. Cholesterol de novo synthesis was measured by intraperitoneal [1-(14)C] acetate injection and atherosclerotic plaques were quantified by histological analysis. A dual-luciferase reporter assay was used to assess the ability of JAZF1 to regulate HMGCR transcriptional activity. JAZF1 overexpression improved HFD-induced hepatic insulin resistance in C57BL/6J mice. In HFD-fed ApoE KO mice, JAZF1 overexpression decreased serum cholesterol levels and hepatic cholesterol synthesis by inhibiting CREB-dependent HMGCR promoter transcriptional activity. Analysis of atherosclerotic lesion showed that JAZF1 overexpression had significantly reduced aortic and aortic sinus en face and cross-sectional plaque areas in HFD-fed ApoE KO mice. These data provide the first evidence for an important role of JAZF1 in increasing hepatic insulin sensitivity and preventing atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqiang Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Mengliu Yang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Han Wang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010 Chongqing, China
| | - Pijun Yan
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010 Chongqing, China
| | - Guenther Boden
- The Division of Endocrinology/Diabetes/Metabolism and the Clinical Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gangyi Yang
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
11
|
Finsterer J, Stöllberger C. Juvenile 'cryptogenic' stroke from noncompaction in a neuromuscular disease. Cardiology 2014; 127:223-6. [PMID: 24481414 DOI: 10.1159/000356555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
Juvenile, 'cryptogenic' stroke from left-ventricular hypertrabeculation/noncompaction (LVHT) missed on transthoracic echocardiography (TTE) but present on transesophageal echocardiography (TEE) has not been reported before. A 31-year-old Caucasian male experienced a small acute embolic ischemic stroke in the anterior territory of the left median-cerebral artery. He had a history of epilepsy until the age of 12 years with rare seizures, headache 6 weeks prior to admission and a speech disturbance lasting 2 h. He smoked 20 cigarettes per day. An intensive diagnostic work-up including TTE did not reveal the cause of the stroke. Upon TEE, however, LVHT was found. Cardiac MRI did not reveal intraventricular thrombi. There were mild indications for a neuromuscular disorder. LVHT may be a risk factor for cardioembolic stroke. Patients with cryptogenic stroke and normal TTE should undergo TEE. Patients with LVHT should undergo neurological investigation to look for neuromuscular disorders. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Josef Finsterer
- Second Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | | |
Collapse
|
12
|
Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet. Biochem Biophys Res Commun 2013; 444:296-301. [PMID: 24380856 DOI: 10.1016/j.bbrc.2013.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.
Collapse
|
13
|
Finsterer J, Stöllberger C. Unclassified cardiomyopathies in neuromuscular disorders. Wien Med Wochenschr 2013; 163:505-13. [DOI: 10.1007/s10354-013-0243-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 02/01/2023]
|