1
|
Li Q, Liu X, Li L, Ge C, Jian L. A comprehensive analysis of hepatopancreas metabolomics and transcriptomics provides insights into the growth of three-year-old crabs (Eriocheir sinensis) under low temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101182. [PMID: 38141371 DOI: 10.1016/j.cbd.2023.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Low water temperature is a critical environmental factor limiting the size of cultivated aquatic individuals. However, it has found that a proportion of Eriocheir sinensis cultured in low water temperature with high-altitude can mature into three-year-old crabs, which present larger body size than conventional two-year-old crabs. Based on integrated transcriptomic and metabolomic analysis, the significantly difference focuses on metabolic pathways involving glycine, serine, and threonine metabolism, amino sugar and nucleotide sugar metabolism, cysteine and methionine metabolism, pantothenate and CoA biosynthesis, arginine and proline metabolism, and vitamin digestion and absorption. It revealed that the growth performance of three-year-old crabs is mainly regulated by improving its antioxidant defense to maintain physical fitness, while reducing protein consumption by intensifying energy supplement ability and enhancing the ability to digest and absorb nutrients at low temperature. This study provides new insights on the molecular and metabolic pathways that control E. sinensis growth at high-altitude and low water temperature, laying the theoretical basis for further artificial three-year-old crabs breeding.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie 551700, Guizhou Province, China; College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie 551700, Guizhou Province, China; Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada.
| | - Xiangui Liu
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie 551700, Guizhou Province, China
| | - Lijuan Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie 551700, Guizhou Province, China; College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie 551700, Guizhou Province, China
| | - Chuanlong Ge
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie 551700, Guizhou Province, China; College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie 551700, Guizhou Province, China
| | - Li Jian
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie 551700, Guizhou Province, China; College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie 551700, Guizhou Province, China
| |
Collapse
|
2
|
Wang H, Wang Y, Niu M, Hu L, Chen L. Cold Acclimation for Enhancing the Cold Tolerance of Zebrafish Cells. Front Physiol 2022; 12:813451. [PMID: 35153820 PMCID: PMC8832062 DOI: 10.3389/fphys.2021.813451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cold stress is an important threat in the life history of fish. However, current research on the tolerance mechanisms of fish to cold stress is incomplete. To explore the relevant molecular mechanisms enabling cold stress tolerance in fish, here we studied ZF4 cells subjected to short-term (4 days) low temperature stress and long-term (3 months) low temperature acclimation. The results showed that cell viability decreased and the cytoskeleton shrank under short-term (4 days) low temperature stress, while the cell viability and the cytoskeleton became normal after cold acclimation at 18°C for 3 months. Further, when the cells were transferred to the lower temperature (13°C), the survival rate was higher in the acclimated than non-acclimated group. By investigating the oxidative stress pathway, we found that the ROS (reactive oxygen species) content increased under short-term (4 days) cold stress, coupled with changes in glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) enzyme activity levels. In addition, overproduction of ROS disrupted physiological cellular homeostasis that generated apoptosis via the activation of the mitochondrial pathway. However, when compared with the non-domesticated group, both ROS levels and apoptosis were lowered in the long-term (3 months) domesticated cells. Taken together, these findings suggest that cold acclimation can improve the low temperature tolerance of the cells. This exploration of the mechanism by which zebrafish cells tolerate cold stress, thus contributes to laying the foundation for future study of the molecular mechanism of cold adaptation in fish.
Collapse
Affiliation(s)
- Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Minghui Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
3
|
Sun S, Cao X, Gao J. C24:0 avoids cold exposure-induced oxidative stress and fatty acid β-oxidation damage. iScience 2021; 24:103409. [PMID: 34849471 PMCID: PMC8607208 DOI: 10.1016/j.isci.2021.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Low temperatures can cause severe growth inhibition and mortality in fish. Previous studies about the cold resistance of fish mainly focused on the role of unsaturated fatty acids, rather than saturated fatty acids (SFAs). In this study, the role of very-long-chain SFA synthetized by fatty acyl elongase 1 gene (elovl1) in cold resistance was explored. Both an aggravated liver oxidative stress and a mitochondrial metabolism disorder were observed in elovl1a–/– and elovl1b–/– zebrafish with cold stress. In vitro studies confirmed that high levels of C20:0 and C22:0 obviously increased the hepatocyte oxidative stress and activated the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway to further induce apoptosis and inflammation. We further demonstrated that C24:0 could promote mitochondrial β-oxidation to improve the cold resistance of zebrafish. Overall, our results define a positive role of C24:0 fatty acids synthetized by elovl1 in the cold resistance of fish. elovl1, closely associated with C24:0, was activated in ZFL cells with cold stress C20:0 and C22:0 induced Erk1/2 expression and apoptosis to impair cold tolerance This study showed the positive role of C24:0 in the cold resistance of fish
Collapse
Affiliation(s)
- Shouxiang Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China.,College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China.,College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Garcia-Calvo E, Cabezas-Sanchez P, Luque-Garcia JL. In-vitro and in-vivo evaluation of the molecular mechanisms involved in the toxicity associated to CdSe/ZnS quantum dots exposure. CHEMOSPHERE 2021; 263:128170. [PMID: 33297139 DOI: 10.1016/j.chemosphere.2020.128170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
The use of different types of quantum dots is growing in recent times in both the technology and biomedical industries. Such is the extension of the use of these quantum dots that they have become potential emerging contaminants, which makes it necessary to evaluate their potential toxicity and the impact they may have on both health and the environment. Although studies already exist in this regard, the molecular mechanisms by which CdSe/ZnS quantum dots exert their toxic effects are still unknown. For this reason, in this study, a comprehensive proteomic approach has been designed, applying the SILAC strategy to an in-vitro model (hepatic cells) and the super-SILAC alternative to an in-vivo model, specifically zebrafish larvae. This integral approach, together with additional bioanalytical assays, has made it possible for the identification of proteins, molecular mechanisms and, therefore, biological processes that are altered as a consequence of exposure to CdSe/ZnS quantum dots. It has been demonstrated, on the one hand, that these quantum dots induce hypoxia and ROS generation in hepatic cells, which leads to apoptosis, specifically through the TDP-43 pathway. On the other hand, it has been shown that exposure to CdSe/ZnS quantum dots has a high impact on developing organisms, inducing serious neural and developmental problems in the locomotor system.
Collapse
Affiliation(s)
- E Garcia-Calvo
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain
| | - P Cabezas-Sanchez
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain
| | - J L Luque-Garcia
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain.
| |
Collapse
|
5
|
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep 2020; 10:5913. [PMID: 32246073 PMCID: PMC7125123 DOI: 10.1038/s41598-020-62699-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions.
Collapse
|
6
|
Sun J, Liu Q, Zhao L, Cui C, Wu H, Liao L, Tang G, Yang S, Yang S. Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100628. [PMID: 31677400 DOI: 10.1016/j.cbd.2019.100628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Water temperature can affect the metabolism of fish. Common carp (Cyprinus carpio) is a representative eurythermic fish that can survive at a wide range of ambient temperatures, allowing it to live in an extensive geographical range. The goal of this work was to study the glucose metabolism of common carp at different temperatures and determine the miRNAs involved in the regulation of glucose metabolism. We determined the indicators related to glucose metabolism after long-term temperature stress and constructed nine small RNA libraries of livers under different temperature stress (5 °C, 17 °C, and 30 °C, with three biological replicates for each temperature), and subjected these samples to high-throughput sequencing. A positive relationship was observed between weight gain rate (WGR) and temperature increase after 18 days of temperature stress. However, the glucose level in the plasma maintained a gentle decrease. Unexpectedly, liver lactic acid levels were elevated in HTG (high temperature group) and LTG (low temperature group). Six down-regulated miRNAs (miR-122, miR-30b, miR-15b-5p, miR-20a-5p, miR-1, and miR-7b) were identified as involved in the regulation of glycolysis. Twelve genes were predicted as targets of these miRNAs, and these genes are in pathways related to pyruvate metabolism, glycolysis/gluconeogenesis, and the citrate cycle (TCA cycle). The results allowed prediction of a potential regulatory network of miRNAs involved in the regulation of glycolysis. The target genes of six down-regulated miRNAs were up-regulated under temperature stress, including Aldolase C, fructose-bisphosphate, b (ALDOCB), multiple inositol-polyphosphate phosphatase 1 (MINPP1), phosphoenolpyruvate carboxykinase 1 (PCK1), pyruvate dehydrogenase E1 alpha 1 (PDHA1), aldehyde dehydrogenase 9 family member A1a (ALDH9A1A), Acetyl-coenzyme A synthetase (ACSS), lactate dehydrogenase b (LDH-b), and glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Other key genes of glycolysis, glucose transporter 1 (GLUT-1), pyruvate kinase PKM (PKM), and mitochondrial pyruvate carrier (MPC) were significantly up-regulated in LTG and HTG. Overall, the results suggest that miRNAs maintain their energy requirements by regulating glycolysis and play an important role in the molecular response to cold and heat stress of common carp. These data provide the foundation for further studies of the role of miRNAs in environmental adaptation in fish.
Collapse
Affiliation(s)
- JunLong Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - LiuLan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - ShiYong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
7
|
Lu DL, Ma Q, Sun SX, Zhang H, Chen LQ, Zhang ML, Du ZY. Reduced oxidative stress increases acute cold stress tolerance in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:166-173. [PMID: 31220619 DOI: 10.1016/j.cbpa.2019.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/18/2022]
Abstract
Cold stress is a major threat to fish in both nature and aquaculture, and can induce oxidative stress in various fish. While the exact role of oxidative stress in cold-caused mortality is still unknown. The purpose of the present study was to evaluate the effects of oxidative stress on cold tolerance in fish and verify whether changing oxidative status could affect cold tolerance. We firstly demonstrated that acute cold exposure induced high oxidative stress in zebrafish liver, which may lead to mortality. Then we performed in vivo and in vitro experiments to determine the effects of the altered oxidative status on cold tolerance in zebrafish and zebrafish liver cell line (ZFL), respectively. In the in vivo study, the zebrafish which were fed with α-lipoic acid or reduced glutathione had lower cold-caused oxidative stress and tissues damage, and showed higher cold tolerance. In the experiment using zebrafish cells, increasing oxidative stress by H2O2 decreased the cellular cold tolerance, and the cold tolerance was partly recovered when oxidative stress was reduced by the addition of Vitamin C (VC). Taken together, we conclude that the reduction of oxidative stress increases cold tolerance in fish.
Collapse
Affiliation(s)
- Dong-Liang Lu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Han Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Lu DL, Ma Q, Wang J, Li LY, Han SL, Limbu SM, Li DL, Chen LQ, Zhang ML, Du ZY. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol 2019; 597:1585-1603. [PMID: 30615194 DOI: 10.1113/jp277091] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS In a cold environment, mammals increase their food intake while fish decrease or stop feeding. However, the physiological value of fasting during cold resistance in fish is currently unknown. Fasting for more than 48 h enhanced acute cold resistance in zebrafish, which correlated with lipid catabolism and cell damage attenuation. Lipid catabolism and autophagy were necessary for cold resistance in fish and the inhibition of mitochondrial fatty acid β-oxidation or autophagy weakened the fasting-induced cold resistance. Repression of mechanistic target of rapamycin (mTOR) signalling pathway by rapamycin largely mimicked the beneficial effects of fasting in promoting cold resistance, suggesting mTOR signalling may be involved in the fasting-induced cold resistance in fish. Our study demonstrates that fasting may be a protective strategy for fish to survive under cold stress. ABSTRACT In cold environments, most homeothermic animals increase their food intake to supply more energy to maintain body temperature, whereas most poikilothermic animals such as fishes decrease or even stop feeding under cold stress. However, the physiological value of fasting during cold resistance in poikilotherms has not been explained. Here, we show that moderate fasting largely enhanced cold resistance in fish. By using pharmacological (fenofibrate, mildronate, chloroquine and rapamycin) and nutritional approaches (fatty acids diets and amino acids diets) in wild-type or specific gene knock-out zebrafish models (carnitine palmitoyltransferase-1b-deficient strain, CPT1b-/- , or autophagy-related protein 12-deficient strain, ATG12-/- ), we verified that fasting-stimulated lipid catabolism and autophagy played essential roles in the improved cold resistance. Moreover, suppression of the mechanistic target of rapamycin (mTOR) pathway by using rapamycin mostly mimicked the beneficial effects of fasting in promoting cold resistance as either the physiological phenotype or transcriptomic pattern. However, these beneficial effects were largely reduced when the mTOR pathway was activated through high dietary leucine supplementation. We conclude that fasting helps fish to resist cold stress by modulating lipid catabolism and autophagy, which correlates with the mTOR signalling pathway. Therefore, fasting can act as a protective strategy of fish in resisting coldness.
Collapse
Affiliation(s)
- Dong-Liang Lu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Qiang Ma
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Jing Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Ling-Yu Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Si-Lan Han
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Samwel Mchele Limbu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
9
|
Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct Integr Genomics 2018; 19:265-280. [DOI: 10.1007/s10142-018-0643-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
|
10
|
Ammar AY, El Nahas AF, Mahmoud S, Barakat ME, Hassan AM. Characterization of type IV antifreeze gene in Nile tilapia (Oreochromis niloticus) and influence of cold and hot weather on its expression and some immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:515-525. [PMID: 29234908 DOI: 10.1007/s10695-017-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work is to study the effect of the thermal stress of ambient temperature during winter and summer on the expression of type IV antifreeze gene (ANF IV) in different tissues of Nile tilapia (Oreochromis niloticus) as well as some immune-related genes. At first, genomic ANF IV gene was characterized from one fish; 124 amino acids were identified with 92.7% similarity with that on the gene bank. Expression of ANF IV and immune-related genes were done twice, once at the end of December (winter sample, temperature 14 °C) and the other at August (summer sample, temperature 36 °C). Assessment of ANF IV gene expression in different organs of fish was done; splenic mRNA was used for assessment of immune-related gene transcripts (CXCl2 chemokine, cc-chemokine, INF-3A, and MHC IIβ). Winter expression analysis of AFP IV in O. niloticus revealed significant upregulation of mRNA transcript levels in the intestine, gills, skin, spleen, liver, and brain with 324.03-, 170.06-, 107.63-, 97.61-, 94.35-, and 27.85-folds, respectively. Furthermore, upregulation in the gene was observed in some organs during summer: in the liver, gills, skin, intestine, and brain with lower levels compared with winter. The level of expression of immune-related genes in winter is significantly higher than summer in all assessed genes. Cc-chemokine gene expression was the most affected in both winter and summer. Variable expression profile of ANF IV in different organs and in different seasons together with its amino acid similarity of N-terminal and C-terminal with apolipoprotein (lipid binder) and form of high-density lipoprotein (HDL) suggests a different role for this protein which may be related to lipid metabolism.
Collapse
Affiliation(s)
- Asmma Y Ammar
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| | - Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, 22758, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafer El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed E Barakat
- Biotechnology Department, Animal Health Research Institute, Kafer El Sheik, Egypt
| | - Asmaa M Hassan
- Biotechnology department, Animal Health Research Institute, Kafr El Sheikh, Egypt
| |
Collapse
|
11
|
Wu CL, Li BY, Wu JL, Hui CF. Mechanism and Aquaculture Application of Teleost Enzymes Adapted at Low Temperature. MARINE ENZYMES BIOTECHNOLOGY: PRODUCTION AND INDUSTRIAL APPLICATIONS, PART II - MARINE ORGANISMS PRODUCING ENZYMES 2016; 79:117-136. [DOI: 10.1016/bs.afnr.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Transcriptome Analysis to Identify Cold-Responsive Genes in Amur Carp (Cyprinus carpio haematopterus). PLoS One 2015; 10:e0130526. [PMID: 26098567 PMCID: PMC4476670 DOI: 10.1371/journal.pone.0130526] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
The adaptation of fish to low temperatures is the result of long-term evolution. Amur carp (Cyprinus carpio haematopterus) survives low temperatures (0-4°C) for six months per year. Therefore, we chose this fish as a model organism to study the mechanisms of cold-adaptive responses using high-throughput sequencing technology. This system provided an excellent model for exploring the relationship between evolutionary genomic changes and environmental adaptations. The Amur carp transcriptome was sequenced using the Illumina platform and was assembled into 163,121 cDNA contigs, with an average read length of 594 bp and an N50 length of 913 bp. A total of 162,339 coding sequences (CDSs) were identified and of 32,730 unique CDSs were annotated. Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to classify all CDSs into different functional categories. A large number of cold-responsive genes were detected in different tissues at different temperatures. A total of 9,427 microsatellites were identified and classified, with 1952 identifying in cold-responsive genes. Based on GO enrichment analysis of the cold-induced genes, “protein localization” and “protein transport” were the most highly represented biological processes. “Circadian rhythm,” “protein processing in endoplasmic reticulum,” “endocytosis,” “insulin signaling pathway,” and “lysosome” were the most highly enriched pathways for the genes induced by cold stress. Our data greatly contribute to the common carp (C. carpio) transcriptome resource, and the identification of cold-responsive genes in different tissues at different temperatures will aid in deciphering the genetic basis of ecological and environmental adaptations in this species. Based on our results, the Amur carp has evolved special strategies to survive low temperatures, and these strategies include the system-wide or tissue-specific induction of gene expression during their six-month overwintering period.
Collapse
|
13
|
Wang Q, Tan X, Jiao S, You F, Zhang PJ. Analyzing cold tolerance mechanism in transgenic zebrafish (Danio rerio). PLoS One 2014; 9:e102492. [PMID: 25058652 PMCID: PMC4109919 DOI: 10.1371/journal.pone.0102492] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13 °C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28 °C. After 2 h at 13 °C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P<0.05). At 13 °C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28 °C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Pei-Jun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
14
|
Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol 2014; 23:3452-68. [DOI: 10.1111/mec.12832] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Susan E. Johnston
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| | - Panu Orell
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Victoria L. Pritchard
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| | - Matthew P. Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences; Norwegian University of Life Sciences; Aas N-1432 Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences; Norwegian University of Life Sciences; Aas N-1432 Norway
| | - Eero Niemelä
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Jaakko Erkinaro
- Finnish Game and Fisheries Research Institute; Utsjoki FIN-99980 Finland
| | - Craig R. Primmer
- Division of Genetics and Physiology; Department of Biology; University of Turku; Itäinen Pitkäkatu 4 Turku FIN-20520 Finland
| |
Collapse
|
15
|
Gotesman M, Soliman H, El-Matbouli M. Antibody screening identifies 78 putative host proteins involved in Cyprinid herpesvirus 3 infection or propagation in common carp, Cyprinus carpio L. JOURNAL OF FISH DISEASES 2013; 36:721-33. [PMID: 23347276 PMCID: PMC3961710 DOI: 10.1111/jfd.12073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 05/15/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious and notifiable disease afflicting common and koi carp, Cyprinus carpio L., termed koi herpesvirus disease (KHVD). Significant progress has been achieved in the last 15 years, since the initial reports surfaced from Germany, USA and Israel of the CyHV-3 virus, in terms of pathology and detection. However, relatively few studies have been carried out in understanding viral replication and propagation. Antibody-based affinity has been used for detection of CyHV-3 in enzyme-linked immunosorbent assay and PCR-based techniques, and immunohistological assays have been used to describe a CyHV-3 membrane protein, termed ORF81. In this study, monoclonal antibodies linked to N-hydroxysuccinimide (NHS)-activated spin columns were used to purify CyHV-3 and host proteins from tissue samples originating in either CyHV-3 symptomatic or asymptomatic fish. The samples were next analysed either by polyacrylamide gel electrophoresis (PAGE) and subsequently by electrospray ionization coupled to mass spectrometry (ESI-MS) or by ESI-MS analysis directly after purification. A total of 78 host proteins and five CyHV-3 proteins were identified in the two analyses. These data can be used to develop novel control methods for CyHV-3, based on pathways or proteins identified in this study.
Collapse
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
16
|
Koo BC, Kwon MS, Roh JY, Kim M, Kim JH, Kim T. Quantitative analysis of tetracycline-inducible expression of the green fluorescent protein gene in transgenic chickens. J Reprod Dev 2012; 58:672-7. [PMID: 22850941 DOI: 10.1262/jrd.2012-092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of transgenic farm animals as "bioreactors" to address the growing demand for biopharmaceuticals, both in terms of increased quantity and greater number, represents a key development in the advancement of medical science. However, the potential for detrimental side-effects as a result of uncontrolled constitutive expression of foreign genes in transgenic animals is a well-recognized limitation of such systems. Previously, using a tetracycline-inducible expression system, we demonstrated the induction of expression of a transgene encoding green fluorescent protein (GFP) in transgenic chickens by feeding with doxycycline, a tetracycline derivative; expression of GFP reverted to pre-induction levels when the inducer was removed from the diet. As a proof of principle study, however, quantitative assessment of expression was not possible, as only one G0 and one G1 transgenic chicken was obtained. In the current study, a sufficient number of G2 and G3 transgenic chickens were obtained, and quantification analysis demonstrated up to a 20-fold induction of expression by doxycycline. In addition, stable transmission of the transgene without any apparent genetic modifications was observed through several generations. The use of an inducible expression system that can be regulated by dietary supplementation could help mitigate the physiological disruption that can occur in transgenic animals as a result of uncontrolled constitutive expression of a transgene. Importantly, these results also support the use of the retroviral system for generating transgenic animals with minimal risk in terms of biosafety.
Collapse
Affiliation(s)
- Bon Chul Koo
- Department of Physiology, Catholic University of Daegu School of Medicine, Daegu 705-034, Korea
| | | | | | | | | | | |
Collapse
|