1
|
Bevacqua RJ, Fernandez-Martin R, Canel NG, Gibbons A, Texeira D, Lange F, Vans Landschoot G, Savy V, Briski O, Hiriart MI, Grueso E, Ivics Z, Taboga O, Kues WA, Ferraris S, Salamone DF. Assessing Tn5 and Sleeping Beauty for transpositional transgenesis by cytoplasmic injection into bovine and ovine zygotes. PLoS One 2017; 12:e0174025. [PMID: 28301581 PMCID: PMC5354444 DOI: 10.1371/journal.pone.0174025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Transgenic domestic animals represent an alternative to bioreactors for large-scale production of biopharmaceuticals and could also provide more accurate biomedical models than rodents. However, their generation remains inefficient. Recently, DNA transposons allowed improved transgenesis efficiencies in mice and pigs. In this work, Tn5 and Sleeping Beauty (SB) transposon systems were evaluated for transgenesis by simple cytoplasmic injection in livestock zygotes. In the case of Tn5, the transposome complex of transposon nucleic acid and Tn5 protein was injected. In the case of SB, the supercoiled plasmids encoding a transposon and the SB transposase were co-injected. In vitro produced bovine zygotes were used to establish the cytoplasmic injection conditions. The in vitro cultured blastocysts were evaluated for reporter gene expression and genotyped. Subsequently, both transposon systems were injected in seasonally available ovine zygotes, employing transposons carrying the recombinant human factor IX driven by the beta-lactoglobulin promoter. The Tn5 approach did not result in transgenic lambs. In contrast, the Sleeping Beauty injection resulted in 2 lambs (29%) carrying the transgene. Both animals exhibited cellular mosaicism of the transgene. The extraembryonic tissues (placenta or umbilical cord) of three additional animals were also transgenic. These results show that transpositional transgenesis by cytoplasmic injection of SB transposon components can be applied for the production of transgenic lambs of pharmaceutical interest.
Collapse
Affiliation(s)
- R. J. Bevacqua
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - R. Fernandez-Martin
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - N. G. Canel
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - A. Gibbons
- Experimental Station Bariloche, INTA, Bariloche, Argentina
| | - D. Texeira
- Laboratorio de Fisiologia e Controle da Reprodução, FAVET, UECE, Ceará State, Brasil
| | - F. Lange
- Cloning and Transgenesis Laboratory, Maimónides University, Buenos Aires, Argentina
| | - G. Vans Landschoot
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
- Cloning and Transgenesis Laboratory, Maimónides University, Buenos Aires, Argentina
| | - V. Savy
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - O. Briski
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - M. I. Hiriart
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
| | - E. Grueso
- Paul-Ehrlich-Institute, Langen, Germany
| | - Z. Ivics
- Paul-Ehrlich-Institute, Langen, Germany
| | - O. Taboga
- CICVyA Biotechnology Institute, INTA Castelar, Buenos Aires, Argentina
| | - W. A. Kues
- Friedrich-Loeffler-Institut, Neustadt, Germany
| | - S. Ferraris
- Cloning and Transgenesis Laboratory, Maimónides University, Buenos Aires, Argentina
| | - D. F. Salamone
- Animal Biotechnology Laboratory, Facultad de Agronomia. INPA-CONICET, Buenos Aires University, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
2
|
Crotamine, a cell-penetrating peptide, is able to translocate parthenogenetic and in vitro fertilized bovine embryos but does not improve exogenous DNA expression. J Assist Reprod Genet 2016; 33:1405-1413. [PMID: 27515309 DOI: 10.1007/s10815-016-0772-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Crotamine is capable of penetrating cells and embryos and transfecting cells with exogenous DNA. However, no studies are available regarding its uptake by parthenogenetic (PA) embryos or its use for transfection in in vitro fertilized (IVF) embryos. This study aimed to determine the translocation kinetics of crotamine into PA and IVF bovine embryos and assess its effect over in vitro development of PA embryos. Moreover, crotamine-DNA complexes were used to test the transfection ability of crotamine in bovine IVF zygotes. METHODS PA and IVF embryos were exposed to labeled crotamine for four interval times. Embryo toxicity was assayed over PA embryos after 24 h of exposure to crotamine. Additionally, IVF embryos were exposed to or injected with a complex formed by crotamine and pCX-EGFP plasmid. RESULTS Confocal images revealed that crotamine was uptaken by PA and IVF embryos as soon as 1 h after exposure. Crotamine exposure did not affect two to eight cells and blastocyst rates or blastocyst cell number (p > 0.05) of PA embryos. Regarding transfection, exposure or injection into the perivitelline space with crotamine-DNA complex did not result in transgene-expressing embryos. Nevertheless, intracytoplasmic injection of plasmid alone showed higher expression rates than did injection with crotamine-DNA complex at days 4 and 7 (p < 0.05). CONCLUSIONS Crotamine is able to translocate through zona pellucida (ZP) of PA and IVF embryos within 1 h of exposure without impairing in vitro development. However, the use of crotamine does not improve exogenous DNA expression in cattle embryos, probably due to the tight complexation of DNA with crotamine.
Collapse
|
3
|
Bevacqua RJ, Fernandez-Martín R, Savy V, Canel NG, Gismondi MI, Kues WA, Carlson DF, Fahrenkrug SC, Niemann H, Taboga OA, Ferraris S, Salamone DF. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 2016; 86:1886-1896.e1. [PMID: 27566851 DOI: 10.1016/j.theriogenology.2016.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/17/2016] [Accepted: 06/05/2016] [Indexed: 12/19/2022]
Abstract
The recently developed engineered nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) 9, provide new opportunities for gene editing in a straightforward manner. However, few reports are available regarding CRISPR application and efficiency in cattle. Here, the CRISPR/Cas9 system was used with the aim of inducing knockout and knock-in alleles of the bovine PRNP gene, responsible for mad cow disease, both in bovine fetal fibroblasts and in IVF embryos. Five single-guide RNAs were designed to target 875 bp of PRNP exon 3, and all five were codelivered with Cas9. The feasibility of inducing homologous recombination (HR) was evaluated with a reporter vector carrying EGFP flanked by 1 kbp PRNP regions (pHRegfp). For somatic cells, plasmids coding for Cas9 and for each of the five single-guide RNAs (pCMVCas9 and pSPgRNAs) were transfected under two different conditions (1X and 2X). For IVF zygotes, cytoplasmic injection was conducted with either plasmids or mRNA. For plasmid injection groups, 1 pg pCMVCas9 + 0.1 pg of each pSPgRNA (DNA2X) was used per zygote. In the case of RNA, two amounts (RNA1X and RNA2X) were compared. To assess the occurrence of HR, a group additionally cotransfected or coinjected with pHRegfp plasmid was included. Somatic cell lysates were analyzed by polymerase chain reaction and surveyor assay. In the case of embryos, the in vitro development and the genotype of blastocysts were evaluated by polymerase chain reaction and sequencing. In somatic cells, 2X transfection resulted in indels and large deletions of the targeted PRNP region. Regarding embryo injection, higher blastocyst rates were obtained for RNA injected groups (46/103 [44.6%] and 55/116 [47.4%] for RNA1X and RNA2X) than for the DNA2X group (26/140 [18.6%], P < 0.05). In 46% (26/56) of the total sequenced blastocysts, specific gene editing was detected. The total number of genetic modifications (29) was higher than the total number of gene-edited embryos, as three blastocysts from the group RNA2X reported more than one type of modification. The modifications included indels (10/56; 17.9%) and large deletions (19/56; 33.9%). Moreover, it was possible to detect HR in 1/8 (12.5%) embryos treated with RNA2X. These results report that the CRISPR/Cas9 system can be applied for site-specific edition of the bovine genome, which could have a great impact on the development of large animals resistant to important zoonotic diseases.
Collapse
Affiliation(s)
- R J Bevacqua
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - R Fernandez-Martín
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - V Savy
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - N G Canel
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina
| | - M I Gismondi
- Instituto de Biotecnología, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - W A Kues
- Institute of Farm Animal Genetics (FLI), Mariensee, Hannover, Germany
| | | | | | - H Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Hannover, Germany
| | - O A Taboga
- Instituto de Biotecnología, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - S Ferraris
- Cloning and Transgenesis Laboratory, Maimonides University, Buenos Aires, Argentina
| | - D F Salamone
- Animal Biotechnology Laboratory, INPA UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Luchetti CG, Bevacqua RJ, Lorenzo MS, Tello MF, Willis M, Buemo CP, Lombardo DM, Salamone DF. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos. Reprod Domest Anim 2016; 51:501-8. [PMID: 27260090 DOI: 10.1111/rda.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids.
Collapse
Affiliation(s)
- C G Luchetti
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - R J Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M S Lorenzo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M F Tello
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Willis
- Centro de Estudios Biomedicos, Biotecnologicos, Ambientales y Diagnostico (CEBBAD), Universidad Maimonides, Ciudad Autónoma de Buenos Aires, Argentina
| | - C P Buemo
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D M Lombardo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D F Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Ji Q, Cong P, Zhao H, Song Z, Zhao G, Gao J, Nie Y, Chen Y. Exogenous expression ofOCT4facilitates oocyte-mediated reprogramming in cloned porcine embryos. Mol Reprod Dev 2014; 81:820-32. [DOI: 10.1002/mrd.22351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Qianqian Ji
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Haijing Zhao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Zhenwei Song
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Guangyin Zhao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Jintao Gao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Yu Nie
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| |
Collapse
|
6
|
Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology 2013; 80:357-64. [DOI: 10.1016/j.theriogenology.2013.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023]
|
7
|
Bevacqua R, Canel N, Hiriart M, Sipowicz P, Rozenblum G, Vitullo A, Radrizzani M, Fernandez Martin R, Salamone D. Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos. Theriogenology 2013; 80:104-13.e1-29. [DOI: 10.1016/j.theriogenology.2013.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
|
8
|
Canel N, Bevacqua R, Hiriart MI, Salamone D. Replication of somatic micronuclei in bovine enucleated oocytes. Cell Div 2012; 7:23. [PMID: 23173571 PMCID: PMC3564703 DOI: 10.1186/1747-1028-7-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022] Open
Abstract
Background Microcell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (−)] to a transgene (50 ng/μl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−), Parthenogenetic (−) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05). Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread. Conclusions We have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.
Collapse
Affiliation(s)
- Natalia Canel
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad Agronomía, Universidad de Buenos Aires, Av, San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
9
|
Production of IVF transgene-expressing bovine embryos using a novel strategy based on cell cycle inhibitors. Theriogenology 2012; 78:57-68. [DOI: 10.1016/j.theriogenology.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/17/2022]
|