1
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
2
|
Zhang Y, Xu S, Jin Q, Luo J, Gao C, Jayaprakash S, Wang H, Zhuang L, He J. Establishment of transgenic pigs overexpressing human PKD2-D511V mutant. Front Genet 2022; 13:1059682. [DOI: 10.3389/fgene.2022.1059682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous missense mutations have been reported in autosomal dominant polycystic kidney disease which is one of the most common renal genetic disorders. The underlying mechanism for cystogenesis is still elusive, partly due to the lack of suitable animal models. Currently, we tried to establish a porcine transgenic model overexpressing human PKD2-D511V (hPKD2-D511V), which is a dominant-negative mutation in the vertebrate in vitro models. A total of six cloned pigs were finally obtained using somatic cell nuclear transfer. However, five with functional hPKD2-D511V died shortly after birth, leaving only one with the dysfunctional transgenic event to survive. Compared with the WT pigs, the demised transgenic pigs had elevated levels of hPKD2 expression at the mRNA and protein levels. Additionally, no renal malformation was observed, indicating that hPKD2-D511V did not alter normal kidney development. RNA-seq analysis also revealed that several ADPKD-related pathways were disturbed when overexpressing hPKD2-D511V. Therefore, our study implies that hPKD2-D511V may be lethal due to the dominant-negative effect. Hence, to dissect how PKD2-D511V drives renal cystogenesis, it is better to choose in vitro or invertebrate models.
Collapse
|
3
|
Gómez BI, Little JS, Leon AJ, Stewart IJ, Burmeister DM. A 30% incidence of renal cysts with varying sizes and densities in biomedical research swine is not associated with renal dysfunction. Animal Model Exp Med 2020; 3:273-281. [PMID: 33024949 PMCID: PMC7529335 DOI: 10.1002/ame2.12135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Renal cystic disease arising from various etiologies results in fluid-filled cavities within the kidneys. Moreover, preexisting renal dysfunction has been shown to exacerbate multiple pathologies. While swine bred for biomedical research are often clinically inspected for illness/parasites, more advanced diagnostics may aid in uncovering underlying renal abnormalities. METHODS Computed tomography was performed in 54 female prepubertal Yorkshire swine to characterize renal cysts; urine and blood chemistry, and histology of cysts were also performed. RESULTS Digital reconstruction of right and left kidneys demonstrated that roughly one-third of the animals (17/54; 31%) had one or more renal cyst. Circulating biomarkers of renal function were not different between animals that had cysts and those that did not. Alternatively, urinary glucose (P = .03) was higher and sodium (P = .07) tended to be lower in animals with cysts compared to animals without, with no differences in protein (P = .14) or potassium (P = .20). Aspiration of cystic fluid was feasible in two animals, which revealed that the cystic fluid urea nitrogen (97.6 ± 28.7 vs 911.3 ± 468.2 mg/dL), potassium (29.8 ± 14.4 vs 148.2 ± 24.85 mmol/L), uric acid (2.55 ± 1.35 vs 11.4 ± 5.65 mg/dL), and creatinine (60.34 ± 17.26 vs 268.99 ± 95.79 mg/dL) were much lower than in the urine. Histology demonstrated a cyst that markedly compresses the adjacent cortex and is lined by a single layer of flattened epithelium, bounded by fibrous connective tissue which extends into the parenchyma. There is tubular atrophy and loss in these areas. CONCLUSION This study provides valuable insight for future studies focusing on kidney function in swine bred for biomedical research.
Collapse
Affiliation(s)
- Belinda I. Gómez
- United States Army Institute of Surgical ResearchJBSA Fort Sam HoustonTXUSA
| | - Joshua S. Little
- United States Army Institute of Surgical ResearchJBSA Fort Sam HoustonTXUSA
| | - Alisa J. Leon
- United States Army Institute of Surgical ResearchJBSA Fort Sam HoustonTXUSA
| | - Ian J. Stewart
- David Grant US Air Force Medical CenterTravis Air Force BaseCAUSA
- Uniformed Services University of the Health SciencesBethesdaMDUSA
| | - David M. Burmeister
- United States Army Institute of Surgical ResearchJBSA Fort Sam HoustonTXUSA
- Uniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
4
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
5
|
He J, Leng C, Pan J, Li A, Zhang H, Cong F, Wang H. Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens 2020; 9:pathogens9060479. [PMID: 32560439 PMCID: PMC7350310 DOI: 10.3390/pathogens9060479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) can cause severe disease in infected pigs, resulting in massive economic loss for the swine industry. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of the PCV2 infection. Numerous differentially expressed mRNAs, miRNAs, and proteins, together with their associated signaling pathways, have been identified during PCV2 infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in the PCV2 infection. Hence, in our study, RNA-seq was performed by infecting PK-15 cells with PCV2. Analysis of the differentially expressed genes (DEGs) suggested that the cytoskeleton, apoptosis, cell division, and protein phosphorylation were significantly disturbed. Then, using stringent parameters, six lncRNAs were identified. Additionally, potential targets of the lncRNAs were predicted using both cis- and trans-prediction methods. Interestingly, we found that the HOXB (Homeobox B) gene cluster was probably the target of the lncRNA LOC106505099. Enrichment analysis of the target genes showed that numerous developmental processes were altered during PCV2 infection. Therefore, our study revealed that lncRNAs might affect porcine embryonic development through the regulation of the HOXB genes.
Collapse
Affiliation(s)
- Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Wolong District, Nanyang 473061, China;
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Aoqi Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Feng Cong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China;
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
- Correspondence:
| |
Collapse
|
6
|
Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing PKD2. Genes (Basel) 2020; 11:genes11020122. [PMID: 31979107 PMCID: PMC7074416 DOI: 10.3390/genes11020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with the gene dosage effect hypothesis, renal cysts can arise in transgenic murine models overexpressing either PKD1 or PKD2, which are causal genes for autosomal dominant polycystic kidney disease (ADPKD). To determine whether PKD gene overexpression is a universal mechanism driving cystogenesis or is merely restricted to rodents, other animal models are required. Previously, we failed to observe any renal cysts in a transgenic porcine model of PKD2 overexpression partially due to epigenetic silencing of the transgene. Thus, to explore the feasibility of porcine models and identify potential genes/pathways affected in ADPKD, LLC-PK1 cells with high PKD2 expression were generated. mRNA sequencing (RNA-seq) was performed, and MYC, IER3, and ADM were found to be upregulated genes common to the different PKD2 overexpression cell models. MYC is a well-characterized factor contributing to cystogenesis, and ADM is a biomarker for chronic kidney disease. Thus, these genes might be indicators of disease progression. Additionally, some ADPKD-associated pathways, e.g., the mitogen-activated protein kinase (MAPK) pathway, were enriched in the cells. Moreover, gene ontology (GO) analysis demonstrated that proliferation, apoptosis, and cell cycle regulation, which are hallmarks of ADPKD, were altered. Therefore, our experiment identified some biomarkers or indicators of ADPKD, indicating that high PKD2 expression would likely drive cystogenesis in future porcine models.
Collapse
|
7
|
Nakamura K, Otake M. [Current progress of research and use of microminipigs in drug development]. Nihon Yakurigaku Zasshi 2019; 152:202-207. [PMID: 30298842 DOI: 10.1254/fpj.152.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The use of minipigs has been increasing in the areas of pharmacology researches and drug development. The microminipig developed by Fuji Micra Inc. (Shizuoka, Japan) inherits characteristics of other pig strains showing several similarities to humans in anatomy, physiology, omnivorousness and diurnal, but at the same time has several advantages over other pig strains because of its small size which allows easy keeping, handling and dosing, and saving of test substances. The microminipig weighs about 10 kg at the age of 6 months. Canine cages can be used to keep the animal. Swine leukocyte antigens (SLA) are defined in each individual animal which is useful for testing immunological reactions. As there are many similarities in metabolic enzymes and transporters to those in humans, the microminipig is a powerful animal model for toxicokinetic studies. Unfortunately as in other minipigs the microminipig is not appropriate for embryo-fetal development studies of antibody drugs due to its poor placental transfer, but can be used for other reproductive and developmental studies. Repeat dose toxicity, safety pharmacology, immunotoxicity and local tolerance studies should be also other arenas of this animal model.
Collapse
Affiliation(s)
- Kazuichi Nakamura
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center
| |
Collapse
|
8
|
Kong S, Li L, Zhu W, Xin L, Ruan J, Zhang Y, Yang S, Li K. Genetic characteristics of polycistronic system‑mediated randomly‑inserted multi‑transgenes in miniature pigs and mice. Mol Med Rep 2017; 17:37-50. [PMID: 29115474 PMCID: PMC5780143 DOI: 10.3892/mmr.2017.7842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/28/2017] [Indexed: 11/24/2022] Open
Abstract
Multi-transgenic technology is superior to single transgenic technology in biological and medical research. Multi-transgene insertion mediated by a polycistronic system is more effective for the integration of polygenes. The multi-transgene insertion patterns and manners of inheritance are not completely understood. Copy number quantification is one available approach for addressing this issue. The present study determined copy numbers in two multi-transgenic mice (K3 and L3) and two multi-transgenic miniature pigs (Z2 and Z3) using absolute quantitative polymerase chain reaction analysis. For the F0 generation, a given transgene was able to exhibit different copy number integration capacities in different individuals. For the F1 generation, the most notable characteristic was that the copy number proportions were different among pedigrees (P<0.05). The results of the present study demonstrated that transgenes within the same vector exhibited the same integration trend between the F0 and F1 generations. In conclusion, intraspecific consistency and intergenerational copy numbers were compared and the integration capacity of each specific transgene differed in multi-transgenic animals. In particular, the copy number of one transgene may not be used to represent other transgenes in polycistronic vector-mediated multi-transgenic organisms. Consequently, in multi-transgenic experimental animal disease model research or breeding, copy numbers provide an important reference. Therefore, each transgene in multi-transgenic animals must be separately screened to prevent large copy number differences, and inconsistent expression between transgenes and miscellaneous data, in subsequent research.
Collapse
Affiliation(s)
- Siyuan Kong
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Li Li
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yubo Zhang
- Animal Functional Genomics Group, Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, P.R. China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
9
|
Paoli R, Samitier J. Mimicking the Kidney: A Key Role in Organ-on-Chip Development. MICROMACHINES 2016; 7:E126. [PMID: 30404298 PMCID: PMC6190229 DOI: 10.3390/mi7070126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022]
Abstract
Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.
Collapse
Affiliation(s)
- Roberto Paoli
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
| | - Josep Samitier
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain.
- Department of Electronics, Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
10
|
Yao YG, Chen YB, Liang B. The 3rd symposium on animal models of primates - the application of non-human primates to basic research and translational medicine. J Genet Genomics 2015; 42:339-41. [PMID: 26165501 DOI: 10.1016/j.jgg.2015.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yong-Bin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
11
|
Genetically modified pigs to model human diseases. J Appl Genet 2015; 55:53-64. [PMID: 24234401 DOI: 10.1007/s13353-013-0182-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/06/2023]
Abstract
Genetically modified mice are powerful tools to investigate the molecular basis of many human diseases. Mice are, however, of limited value for preclinical studies, because they differ significantly from humans in size, general physiology, anatomy and lifespan. Considerable efforts are, thus, being made to develop alternative animal models for a range of human diseases. These promise powerful new resources that will aid the development of new diagnostics, medicines and medical procedures. Here, we provide a comprehensive review of genetically modified porcine models described in the scientific literature: various cancers, cystic fibrosis, Duchenne muscular dystrophy, autosomal polycystic kidney disease, Huntington’s disease, spinal muscular atrophy, haemophilia A, X-linked severe combined immunodeficiency, retinitis pigmentosa, Stargardt disease, Alzheimer’s disease, various forms of diabetes mellitus and cardiovascular diseases.
Collapse
|
12
|
He J, Li Q, Fang S, Guo Y, Liu T, Ye J, Yu Z, Zhang R, Zhao Y, Hu X, Bai X, Chen X, Li N. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model. Int J Biol Sci 2015; 11:361-9. [PMID: 25798056 PMCID: PMC4366635 DOI: 10.7150/ijbs.10858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/03/2014] [Indexed: 11/13/2022] Open
Abstract
PKD1 and PKD2 mutations could lead to autosomal dominant polycystic kidney disease (ADPKD), which afflicts millions of people worldwide. Due to the marked differences in the lifespan, size, anatomy, and physiology from humans, rodent ADPKD models cannot fully mimic the disease. To obtain a large animal model that recapitulates the disease, we constructed a mini-pig model by mono-allelic knockout (KO) of PKD1 using zinc finger nuclease. The mono-allelic KO pigs had lower PKD1 expression than their wild-type littermates at both the transcriptional and translational levels. After approximately six months, renal cysts appeared and grew progressively in the KO pigs. Histological analysis showed that renal cysts were scatteredly distributed in the mutant pig kidneys and were lined by either cuboidal or flattened epithelial cells. Contrast-enhanced computed tomography confirmed that all of the mutant pigs had renal and hepatic cysts, when they were 11-month-old. Immunohistochemical analysis revealed that most of the cysts were derived from the proximal tubules and collecting ducts. Therefore, the PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis, and this pig model may provide a platform for future study of renal cyst formation.
Collapse
Affiliation(s)
- Jin He
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China ; 2. College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Qiuyan Li
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Suyun Fang
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Ying Guo
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Tongxin Liu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Jianhua Ye
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Zhengquan Yu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Ran Zhang
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yaofeng Zhao
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xiaoxiang Hu
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xueyuan Bai
- 3. Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, PR China
| | - Xiangmei Chen
- 3. Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, PR China
| | - Ning Li
- 1. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, PR China ; 4. College of Animal Science and Technology, Yunnan Agricultural University, Kunming, PR China
| |
Collapse
|
13
|
Wang Q, Han G, Ye J, Gao X, Niu H, Zhao J, Chai Y, Li N, Yin H. Characterization of the polycystic kidney disease 2 gene promoter. Genomics 2014; 104:512-9. [DOI: 10.1016/j.ygeno.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022]
|