1
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
2
|
Jiang C, Tong Z, Fang WL, Fu QB, Gu YJ, Lv TT, Liu DM, Xue W, Lv JW. Microrna-139-5p inhibits epithelial-mesenchymal transition and fibrosis in post-menopausal women with interstitial cystitis by targeting LPAR4 via the PI3K/Akt signaling pathway. J Cell Biochem 2018; 119:6429-6441. [PMID: 29240250 DOI: 10.1002/jcb.26610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
The study explores whether miR-139-5p targeting LPAR4 affects epithelial-mesenchymal transition (EMT) and fibrosis in post-menopausal women with interstitial cystitis (IC) via the PI3K/Akt signaling pathway. Bladder tissues of IC and normal bladder tissues were collected. The pathology of bladder tissues was observed by HE, Masson and Picrosirius red staining. LPAR4 positive expression rate were determined by IHC. ELISA was performed to detect the levels of IL-6, IL-8, IL-10, and TNF-α. Rat IC models were randomized into seven different groups. miR-139-5p, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, P13K, Akt, E-cadherin, N-cadherin, Vimentin, TGF-β1, and CTGF expression were determined by RT-qPCR and Western blotting. Dual luciferase reporter gene assay verified that LPAR4 is a target gene of miR-139-5p. Fibrosis was a pathological manifestation of IC. The IC group showed higher LPAR4, PI3K, Akt, p-PI3K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression but lower miR-139-5p and E-cadherin expression than the normal group. The levels of IL-6, IL-8, IL-10, and TNF-α expression decreased while HB-EGF increased in the IC group in comparison of the normal group. Compared with the blank and NC groups, E-cadherin expression was increased in the miR-139-5p mimic and siRNA-LPAR4 groups, while LPAR4, PI3K, Akt, p-P13K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression were decreased. An opposite trend was found in the miR-139-5p inhibitor group. The miR-139-5p decreased in the miR-139-5p inhibitor + siRNA-LPAR4 and miR-139-5p inhibitor + wortmannin groups. Conclusively, miR-139-5p targeting LPAR4 inhibits EMT and fibrosis in post-menopausal IC women through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Zhen Tong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei-Lin Fang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Qi-Bo Fu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Yin-Jun Gu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Ting-Ting Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dong-Ming Liu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jian-Wei Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| |
Collapse
|