1
|
Gai Y, Liu S, Zhang Z, Wei J, Wang H, Liu L, Bai Q, Qin Q, Zhao C, Zhang S, Xiang N, Zhang X. Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability. PLANTS (BASEL, SWITZERLAND) 2025; 14:671. [PMID: 40094561 PMCID: PMC11901646 DOI: 10.3390/plants14050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Soybean is a vital crop globally and a key source of food, feed, and biofuel. With advancements in high-throughput technologies, soybeans have become a key target for genetic improvement. This comprehensive review explores advances in multi-omics, artificial intelligence, and economic sustainability to enhance soybean resilience and productivity. Genomics revolution, including marker-assisted selection (MAS), genomic selection (GS), genome-wide association studies (GWAS), QTL mapping, GBS, and CRISPR-Cas9, metagenomics, and metabolomics have boosted the growth and development by creating stress-resilient soybean varieties. The artificial intelligence (AI) and machine learning approaches are improving genetic trait discovery associated with nutritional quality, stresses, and adaptation of soybeans. Additionally, AI-driven technologies like IoT-based disease detection and deep learning are revolutionizing soybean monitoring, early disease identification, yield prediction, disease prevention, and precision farming. Additionally, the economic viability and environmental sustainability of soybean-derived biofuels are critically evaluated, focusing on trade-offs and policy implications. Finally, the potential impact of climate change on soybean growth and productivity is explored through predictive modeling and adaptive strategies. Thus, this study highlights the transformative potential of multidisciplinary approaches in advancing soybean resilience and global utility.
Collapse
Affiliation(s)
- Yuhong Gai
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Shuhao Liu
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Zhidan Zhang
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Jian Wei
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Hongtao Wang
- Key Laboratory of Germplasm Resources Evaluation and Application of Changbai Mountain, Tonghua Normal University, Tonghua 134099, China
| | - Lu Liu
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Qianyue Bai
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Qiushi Qin
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
- Jilin Changfa Modern Agricultural Technology Group Co., Ltd., Changchun 130118, China
| | - Chungang Zhao
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Shuheng Zhang
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Nan Xiang
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| | - Xiao Zhang
- College of Resources and Environment, Key Laboratory of Northern Salt-Alkali Tolerant Soybean Breeding, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.L.); (L.L.); (Q.B.); (Q.Q.); (C.Z.); (S.Z.); (N.X.); (X.Z.)
| |
Collapse
|
2
|
Shen W, Liu L, Fang Z, Zhang L, Ren Z, Yu Q, Yin X, Liu B. Cultivation of Genetically Modified Soybeans Did Not Alter the Overall Structure of Rhizosphere Soil Microbial Communities. PLANTS (BASEL, SWITZERLAND) 2025; 14:457. [PMID: 39943018 PMCID: PMC11820298 DOI: 10.3390/plants14030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Herbicide-tolerant soybeans are the most extensively cultivated genetically modified (GM) crop globally. The effects of GM soybean and associated agronomic practices on soil microbial communities remain poorly understood. This study aimed to investigate the impact of planting GM soybeans with a glyphosate application on soil microbial diversity. The main bacterial and fungal community compositions (phylum level) were consistent for GM and non-GM soybeans. The alpha diversity analysis indicated that the bacterial Shannon index was significantly higher in GM rhizosphere soil during flowering compared to non-GM soil. There were no significant differences in the Shannon, Simpson, or ACE indices of the soil fungal communities between GM and non-GM soybeans in the same period. The PCoA analysis showed no significant differences in community structure between the GM and non-GM soybean soil for either fungi or bacteria during the same period. Although the relative abundance of Bradyrhizobium at the seedling stage was significantly lower in those GM than in those non-GM, it did not affect the final number of root nodules in either soybean type. The relative abundance of Frankia was significantly lower in GM rhizosphere soil during the seedling and flowering stages, whereas that of Thelebolus was significantly higher during flowering and pod filling. The abundance and ecological functions of these taxa warrant continuous monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biao Liu
- Key Laboratory on Biodiversity and Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (W.S.); (L.L.); (Z.F.); (L.Z.); (Z.R.); (Q.Y.); (X.Y.)
| |
Collapse
|
3
|
Dong S, Gao Y, Xin L, Ding W. Insights into the effects of transgenic glyphosate-resistant semiwild soybean on soil microbial diversity. Sci Rep 2024; 14:32017. [PMID: 39738641 PMCID: PMC11686263 DOI: 10.1038/s41598-024-83676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Transgenic soybean [Glycine max(L.) Merrill] currently covers approximately 80% of the global crop area for this species, with the majority of transgenic plants being glyphosate resistant (Roundup Ready, GR or RR). However, there is significant concern regarding the potential effects of GM crops and their byproducts on soil microbial communities. During our research, we discovered a type of semiwild soybean that emerged due to genetic drift at a transgenic test site. Nevertheless, the ecological risk to soil rhizosphere microorganisms associated with planting semiwild soybean following genetic drift remains unclear. Therefore, we conducted a field experiment and collected soil samples at various stages of plant growth. Our results indicate that the species diversity of rhizosphere bacteria in transgenic glyphosate-resistant semiwild soybean was also not significantly different from that observed in other types of soybean. Additionally, Basidiomycota had beneficial effects on rhizosphere fungi during the flowering and maturation stages in transgenic glyphosate-tolerant semiwild soybean. These findings provide valuable insights into how genetic drift in transgenic soybean may impact the soil microenvironment.
Collapse
Affiliation(s)
- Shijia Dong
- Harbin University, Harbin, 150086, China.
- Northeast Agricultural University, Harbin, 150030, China.
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liu Xin
- Northeast Agricultural University, Harbin, 150030, China
| | - Wei Ding
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
4
|
Chao S, Sun Y, Zhang Y, Chen Y, Song L, Li P, Tang X, Liang J, Lv B. The response of microbiome assembly within different niches across four stages to the cultivation of glyphosate-tolerant and conventional soybean varieties. Front Microbiol 2024; 15:1439735. [PMID: 39386363 PMCID: PMC11461410 DOI: 10.3389/fmicb.2024.1439735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Plants are inherently connected with the microbiome, which plays a crucial role in regulating various host plant biological processes, including immunity, nutrient acquisition, and resistance against abiotic and biotic stresses. Many factors affect the interaction between plants and microbiome. Methods and results In this study, microbiome samples were collected from five niches (bulk soil, rhizoplane, root endosphere, phylloplane, and leaf endosphere) across four developmental stages (seedling, flowering, podding, and maturity) of various soybean varieties. Composition and structure of bacterial and fungal communities were analyzed using 16S rRNA gene and ITS (Internally Transcribed Spacer) region amplicon sequencing. It was observed that both niches and developmental stages significantly impact on the assembly and composition of soybean microbiome. However, variety, presence of a transgene, and glyphosate application had minimal effects on microbial communities. The dominant microbiome varied across the five niches, with most containing beneficial microbial communities capable of promoting plant growth or increasing disease resistance. Types and abundance of the dominant microbes affected network stability, potentially resulting in functional changes in different ecological niches. Conclusion This study provides theoretical evidence for microbial protection of plants against diseases and demonstrates that systematic analysis of the composition and diversity of soybean microbiomes can contribute to the development of biological control technologies.
Collapse
Affiliation(s)
- Shengqian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yifan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Lili Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Xueming Tang
- School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Beibei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
5
|
Jiang J, Hu X, Ji X, Chen H. High throughput sequencing technology facility research of genomic modification crop cultivation influencing soil microbe. FRONTIERS IN PLANT SCIENCE 2023; 14:1208111. [PMID: 37324715 PMCID: PMC10264764 DOI: 10.3389/fpls.2023.1208111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
|
6
|
Fazal A, Yang M, Wang X, Lu Y, Yao W, Luo F, Han M, Song Y, Cai J, Yin T, Niu K, Sun S, Qi J, Lu G, Wen Z, Yang Y. Discrepancies in rhizobacterial assembly caused by glyphosate application and herbicide-tolerant soybean Co-expressing GAT and EPSPS. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131053. [PMID: 36842198 DOI: 10.1016/j.jhazmat.2023.131053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
There are concerns that the innovation of genetically modified herbicide-tolerant (GMHT) plants, as well as the application of herbicide to such GMHT plants, could have an impact on ecological interactions and unintentionally harm non-targeted organisms. Consequently, we intend to use full-length 16 S rDNA amplicon sequencing to examine changes in the bacterial community in the rhizosphere of GMHT soybean (Z106) harboring 5-enolpyruvylshikimate-3-phosphate synthase and Glyphosate N-acetyltransferase genes and GMHT soybean treated with glyphosate (Z106G). Glyphosate application significantly impacted bacterial alpha diversity (species richness, and Shannon diversity). Permutational multivariate analysis of variance of beta diversity demonstrated that soil compartments and growth stages had a substantial impact on soybean rhizobacterial communities (soil compartments, growth stages, P = 0.001). Community composition revealed that Z106G soils were abundant in Taibaiella and Arthrobacter pascens at maturity, while Chryseobacterium joostei and Stenotrophomonas maltophilia predominated in Z106 soils during flowering. Nitrogen-fixing and phosphate-solubilizing microbes were found in higher proportions in the rhizosphere than in bulk soil, with Sinorhizobium being more abundant in Z106 and Bacillus and Stenotrophomonas being more prevalent in Z106G rhizosphere soils. Collectively, our findings suggest glyphosate application and glyphosate-tolerant soybean as potential regulators of soybean rhizobacterial composition.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yunting Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Weixuan Yao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fuhe Luo
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Mi Han
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuchen Song
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives. PLANTS 2022; 11:plants11182439. [PMID: 36145839 PMCID: PMC9503467 DOI: 10.3390/plants11182439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Assessment of the effects of transgenic plants on microbiota and soil fertility is an important part of the overall assessment of their biosafety. However, the environmental risk assessment of genetically modified plants has long been focused on the aboveground effects. In this review, we discuss the results of two decades of research on the impact of transgenic plants on the physicochemical properties of soil, its enzyme activities and microbial biomass. These indicators allow us to assess both the short-term effects and long-term effects of cultivating transgenic plants. Most studies have shown that the effect of transgenic plants on the soil is temporary and inconsistent. Moreover, many other factors, such as the site location, weather conditions, varietal differences and management system, have a greater impact on soil quality than the transgenic status of the plants. In addition to the effects of transgenic crop cultivation, the review also considers the effects of transgenic plant residues on soil processes, and discusses the future prospects for studying the impact of genetically modified plants on soil ecosystems.
Collapse
|
8
|
Mishra V, Mishra R, Shamra RS. Ribosome inactivating proteins - An unfathomed biomolecule for developing multi-stress tolerant transgenic plants. Int J Biol Macromol 2022; 210:107-122. [PMID: 35525494 DOI: 10.1016/j.ijbiomac.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022]
Abstract
Transgenic crops would serve as a tool to overcome the forthcoming crisis in food security and environmental safety posed by degrading land and changing global climate. Commercial transgenic crops developed so far focus on single stress; however, sustaining crop yield to ensure food security requires transgenics tolerant to multiple environmental stresses. Here we argue and demonstrate the untapped potential of ribosome inactivating proteins (RIPs), translation inhibitors, as potential transgenes in developing transgenics to combat multiple stresses in the environment. Plant RIPs target the fundamental processes of the cell with very high specificity to the infecting pests. While controlling pathogens, RIPs also cause ectopic expression of pathogenesis-related proteins and trigger systemic acquired resistance. On the other hand, during abiotic stress, RIPs show antioxidant activity and trigger both enzyme-dependent and enzyme-independent metabolic pathways, alleviating abiotic stress such as drought, salinity, temperature, etc. RIPs express in response to specific environmental signals; therefore, their expression obviates additional physiological load on the transgenic plants instead of the constitutive expression. Based on evidence from its biological significance, ecological roles, laboratory- and controlled-environment success of its transgenics, and ethical merits, we unravel the potential of RIPs in developing transgenic plants showing co-tolerance to multiple environmental stresses.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India.
| | - Ruchi Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Jesus and Mary College, University of Delhi, Chanakyapuri, Delhi 110021, India.
| | - Radhey Shyam Shamra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
9
|
Huang M, Yin X, Chen J, Cao F. Biochar Application Mitigates the Effect of Heat Stress on Rice ( Oryza sativa L.) by Regulating the Root-Zone Environment. FRONTIERS IN PLANT SCIENCE 2021; 12:711725. [PMID: 34421961 PMCID: PMC8375555 DOI: 10.3389/fpls.2021.711725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Coping with global warming by developing effective agricultural strategies is critical to global rice (Oryza sativa L.) production and food security. In 2020, we observed that the effect of heat stress on rice plants was mitigated by biochar application (40 g kg-1 soil) in a pot experiment with six consecutive days (6-11 days after transplanting) of daily mean temperatures beyond the critical high temperature (33°C) for tillering in rice. To further determine the eco-physiological processes underlying the effect of biochar on resistance to heat stress in rice plants, we compared root-zone soil properties as well as some plant growth and physiological traits related to nitrogen (N) utilization between rice plants grown with and without biochar in the pot experiment. The results showed that the application of biochar improved the root-zone environment of rice plants by reducing soil bulk density, increasing soil organic matter content, and altering soil bacterial community structure by increasing the ratio of Proteobacteria to Acidobacteria, for example. As a consequence, root morphology, architecture, and physiological traits, such as N assimilation and transport proteins, as well as shoot N uptake and utilization (e.g., photosystems I and II proteins), were improved or up-modulated, while the heat-shock and related proteins in roots and leaves were down-modulated in rice plants grown with biochar compared to those without biochar. These results not only expand our understanding of the basic eco-physiological mechanisms controlling increased heat-stress tolerance in rice plants by the application of biochar, but also imply that improving the root-zone environment by optimizing management practices is an effective strategy to mitigate heat stress effects on rice production.
Collapse
|
10
|
Mackelprang R, Lemaux PG. Genetic Engineering and Editing of Plants: An Analysis of New and Persisting Questions. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:659-687. [PMID: 32023090 DOI: 10.1146/annurev-arplant-081519-035916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Genetic engineering is a molecular biology technique that enables a gene or genes to be inserted into a plant's genome. The first genetically engineered plants were grown commercially in 1996, and the most common genetically engineered traits are herbicide and insect resistance. Questions and concerns have been raised about the effects of these traits on the environment and human health, many of which are addressed in a pair of 2008 and 2009 Annual Review of Plant Biology articles. As new science is published and new techniques like genome editing emerge, reanalysis of some of these issues, and a look at emerging issues, is warranted. Herein, an analysis of relevant scientific literature is used to present a scientific perspective on selected topics related to genetic engineering and genome editing.
Collapse
Affiliation(s)
- Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA;
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA;
| |
Collapse
|
11
|
Yang M, Wen Z, Fazal A, Hua X, Xu X, Yin T, Qi J, Yang R, Lu G, Hong Z, Yang Y. Impact of a G2-EPSPS & GAT Dual Transgenic Glyphosate-Resistant Soybean Line on the Soil Microbial Community under Field Conditions Affected by Glyphosate Application. Microbes Environ 2020; 35:ME20056. [PMID: 33162465 PMCID: PMC7734404 DOI: 10.1264/jsme2.me20056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
In the past thirty years, the biosafety of the aboveground part of crops, including horizontal gene transferal through pollen dispersal and hybridization, has been the focus of research; however, microbial communities in the underground part are attracting increasing attention. In the present study, the soybean root-associated bacterial communities of the G2-EPSPS plus GAT transgenic soybean line Z106, its recipient variety ZH10, and Z106 treated with glyphosate (Z106J) were compared at the seedling, flowering, and seed filling stages by high-throughput sequencing of the V4 hypervariable regions of 16S rRNA gene amplicons using Illumina MiSeq. The results obtained showed no significant differences in the alpha/beta diversities of root-associated bacterial communities at the three stages among ZH10, Z106, and Z106J under field growth conditions; however, the relative abundance of four main nitrogen-fixing bacterial genera significantly differed among ZH10, Z106, and Z106J. Ternary plot results indicated that in the root compartment, the proportional contributions of rhizobial nitrogen-fixing Ensifer fredii and Bradyrhizobium elkanii, which exhibit an extremely broad nodulation host range, markedly differed among the three treatments at the three stages. Thus, the present results indicate that transgenic G2-EPSPS and GAT soybean may induce different changes in functional bacterial species in soil, such as E. fredii and B. elkanii, from ZH10, which were compensated for/enriched at the flowering and seed filling stages, respectively, to some extent through as of yet unknown mechanisms by transgenic soybean treated with glyphosate.
Collapse
Affiliation(s)
- Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaomei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing 210042, China
| | - Xinhong Xu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rongwu Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhi Hong
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, Hua XM, Fazal A, Mu CH, Yan SF, Zhen Y, Yang RW, Qi JL, Hong Z, Lu GH, Yang YH. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front Microbiol 2019; 10:1335. [PMID: 31275269 PMCID: PMC6591461 DOI: 10.3389/fmicb.2019.01335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
During the past decades, the effects of the transgenic crops on soil microbial communities have aroused widespread interest of scientists, which was mainly related to the health and growth of plants. In this study, the maize root-associated bacterial communities of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgenic glyphosate-tolerant (GT) maize line CC-2 (CC2) and its recipient variety Zhengdan958 (Z958) were compared at the tasseling and flowering stages by high-throughput sequencing of V3-V4 hypervariable regions of 16S rRNA gene (16S rDNA) amplicons via Illumina MiSeq. In addition, real-time quantitative PCR (qPCR) was also performed to analyze the nifH gene abundance between CC2 and Z958. Our results showed no significant difference in alpha/beta diversity of root-associated bacterial communities at the tasseling or flowering stage between CC2 and Z958 under field growth conditions. The relative abundances of the genera Bradyrhizobium and Bacillus including species B. cereus and B. muralis were significantly lower in the roots of CC2 than that of Z985 under field conditions. Both these species are regarded as plant growth promoting bacteria (PGPB), as they belong to both nitrogen-fixing and phosphate-solubilizing bacterial genera. The comparison of the relative abundance of nitrogen-fixing/phosphate-solubilizing bacteria at the class, order or family levels indicated that only one class Bacilli, one order Bacillales and one family Bacillaceae were found to be significantly lower in the roots of CC2 than that of Z985. These bacteria were also enriched in the roots and rhizospheric soil than in the surrounding soil at both two stages. Furthermore, the class Betaproteobacteria, the order Burkholderiales, the family Comamonadaceae, and the genus Acidovorax were significantly higher in the roots of CC2 than that of Z985 at the tasseling stage, meanwhile the order Burkholderiales and the family Comamonadaceae were also enriched in the roots than in the rhizospheric soil at both stages. Additionally, the nifH gene abundance at the tasseling stage in the rhizosphere soil also showed significant difference. The relative abundance of nifH gene was higher in the root samples and lower in the surrounding soil, which implicated that the roots of maize tend to be enriched in nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Zhong-Ling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mei-Hang Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhao-Zhao Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Yun-Ting Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Gu-Hao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Chun-Hua Mu
- Shandong Academy of Agriculture Sciences, Jinan, China
| | - Shu-Feng Yan
- Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Yan Zhen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Agricultural Risk Factors Influence Microbial Ecology in Honghu Lake. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:76-90. [PMID: 31026580 PMCID: PMC6520916 DOI: 10.1016/j.gpb.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023]
Abstract
Agricultural activities, including stock-farming, planting industry, and fish aquaculture, can affect the physicochemical and biological characters of freshwater lakes. However, the effects of pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear. Hence, in this work, we selected Honghu Lake as a typical lake that is influenced by agriculture activities. We collected water and sediment samples from 18 sites, which span a wide range of areas from impacted and less-impacted areas. We performed a geospatial analysis on the composition of microbial communities associated with physicochemical properties and antibiotic pollution of samples. The co-occurrence networks of water and sediment were also built and analyzed. Our results showed that the microbial communities of impacted and less-impacted samples of water were largely driven by the concentrations of TN, TP, NO3−-N, and NO2−-N, while those of sediment were affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline clearly reflected the variance in taxonomic diversity and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for samples from both water and sediment, large differences of network topology structures between impacted and less-impacted were also observed. Our results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu Lake.
Collapse
|
14
|
Liang J, Jiao Y, Luan Y, Sun S, Wu C, Wu H, Zhang M, Zhang H, Zheng X, Zhang Z. A 2-year field trial reveals no significant effects of GM high-methionine soybean on the rhizosphere bacterial communities. World J Microbiol Biotechnol 2018; 34:113. [PMID: 29987404 PMCID: PMC6096554 DOI: 10.1007/s11274-018-2495-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/01/2018] [Indexed: 11/25/2022]
Abstract
Genetically modified (GM) crops have brought various economic benefits but may also have adversely affected soil microorganisms. To examine whether transgenic high-methionine soybean ZD91 alters the bacterial community structure in the rhizosphere, we performed a 2-year follow-up study using the transgenic high-methionine soybean cultivar ZD91 and wild type cultivar ZD. The community composition and the relative abundance of bacteria in rhizosphere soil were determined by sequencing of the 16S rRNA amplicon. Our results indicated that transgenic soybean ZD91 had no significantly effects on rhizosphere bacterial communities. Instead, the plant growth stage and year appeared to have a stronger effect on bacterial communities. Our findings therefore provided reliable scientific evidence for potential commercial cultivation of cultivar ZD91.
Collapse
Affiliation(s)
- Jingang Liang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Yue Jiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ying Luan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Shi Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Cunxiang Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Science, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haiying Wu
- Nanchong Academy of Agricultural Science, Nanchong, People's Republic of China
| | - Mingrong Zhang
- Nanchong Academy of Agricultural Science, Nanchong, People's Republic of China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes (Basel) 2018; 9:genes9040214. [PMID: 29659545 PMCID: PMC5924556 DOI: 10.3390/genes9040214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
Abstract
The worldwide commercial cultivation of transgenic crops, including glyphosate-tolerant (GT) soybeans, has increased widely during the past 20 years. However, it is accompanied with a growing concern about potential effects of transgenic crops on the soil microbial communities, especially on rhizosphere bacterial communities. Our previous study found that the GT soybean line NZL06-698 (N698) significantly affected rhizosphere bacteria, including some unidentified taxa, through 16S rRNA gene (16S rDNA) V4 region amplicon deep sequencing via Illumina MiSeq. In this study, we performed 16S rDNA V5–V7 region amplicon deep sequencing via Illumina MiSeq and shotgun metagenomic approaches to identify those major taxa. Results of these processes revealed that the species richness and evenness increased in the rhizosphere bacterial communities of N698, the beta diversity of the rhizosphere bacterial communities of N698 was affected, and that certain dominant bacterial phyla and genera were related to N698 compared with its control cultivar Mengdou12. Consistent with our previous findings, this study showed that N698 affects the rhizosphere bacterial communities. In specific, N698 negatively affects Rahnella, Janthinobacterium, Stenotrophomonas, Sphingomonas and Luteibacter while positively affecting Arthrobacter, Bradyrhizobium, Ramlibacter and Nitrospira.
Collapse
|
16
|
Lu GH, Tang CY, Hua XM, Cheng J, Wang GH, Zhu YL, Zhang LY, Shou HX, Qi JL, Yang YH. Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS One 2018; 13:e0192008. [PMID: 29408918 PMCID: PMC5800644 DOI: 10.1371/journal.pone.0192008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/14/2018] [Indexed: 01/01/2023] Open
Abstract
The increased worldwide commercial cultivation of transgenic crops during the past 20 years is accompanied with potential effects on the soil microbial communities, because many rhizosphere and endosphere bacteria play important roles in promoting plant health and growth. Previous studies reported that transgenic plants exert differential effects on soil microbial communities, especially rhizobacteria. Thus, this study compared the soybean root-associated bacterial communities between a 5-enolpyruvylshikimate-3-phosphate synthase -transgenic soybean line (ZUTS31 or simply Z31) and its recipient cultivar (Huachun3 or simply HC3) at the vegetative, flowering, and seed-filling stages. High-throughput sequencing of 16S rRNA gene (16S rDNA) V4 hypervariable region amplicons via Illumina MiSeq and real-time quantitative PCR (qPCR) were performed. Our results revealed no significant differences in the overall alpha diversity of root-associated bacterial communities at the three developmental stages and in the beta diversity of root-associated bacterial communities at the flowering stage between Z31 and HC3 under field growth. However, significant differences in the beta diversity of rhizosphere bacterial communities were found at the vegetative and seed-filling stages between the two groups. Furthermore, the results of next generation sequencing and qPCR showed that the relative abundances of root-associated main nitrogen-fixing bacterial genera, especially Bradyrhizobium in the roots, evidently changed from the flowering stage to the seed-filling stage. In conclusion, Z31 exerts transitory effects on the taxonomic diversity of rhizosphere bacterial communities at the vegetative and seed-filling stages compared to the control under field conditions. In addition, soybean developmental change evidently influences the main symbiotic nitrogen-fixing bacterial genera in the roots from the flowering stage to the seed-filling stage.
Collapse
Affiliation(s)
- Gui-Hua Lu
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Yi Tang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEP, Nanjing, China
| | - Jing Cheng
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Gu-Hao Wang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yin-Ling Zhu
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Li-Ya Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Hui-Xia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Liang Qi
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: , (YHY); (JLQ)
| | - Yong-Hua Yang
- NJU–NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: , (YHY); (JLQ)
| |
Collapse
|
17
|
Chang HX, Haudenshield JS, Bowen CR, Hartman GL. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Front Microbiol 2017; 8:519. [PMID: 28421041 PMCID: PMC5378059 DOI: 10.3389/fmicb.2017.00519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022] Open
Abstract
Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
| | - James S. Haudenshield
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Charles R. Bowen
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Glen L. Hartman
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| |
Collapse
|