1
|
Peng X, Jia X, Shang G, Xue M, Jiang M, Chen D, Zhang F, Hu Y. The generation and characterization of a transgenic zebrafish line with lens-specific Cre expression. Mol Vis 2024; 30:123-136. [PMID: 38601019 PMCID: PMC11006009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose Danio rerio zebrafish constitute a popular model for studying lens development and congenital cataracts. However, the specific deletion of a gene with a Cre/LoxP system in the zebrafish lens is unavailable because of the lack of a lens-Cre-transgenic zebrafish. This study aimed to generate a transgenic zebrafish line in which Cre recombinase was specifically expressed in the lens. Methods The pTol2 cryaa:Cre-polyA-cryaa:EGFP (enhanced green fluorescent protein) plasmid was constructed and co-injected with Tol2-transposase into one-to-two-cell-stage wild-type (WT) zebrafish embryos. Whole-mount in situ hybridization (ISH), tissue section, hematoxylin and eosin staining, a Western blot, a split-lamp observation, and a grid transmission assay were used to analyze the Cre expression, lens structure, and lens transparency of the transgenic zebrafish. Results In this study, we generated a transgenic zebrafish line, zTg(cryaa:Cre-cryaa:EGFP), in which Cre recombinase and EGFP were driven by the lens-specific cryaa promoter. zTg(cryaa:Cre-cryaa:EGFP) began to express Cre and EGFP specifically in the lens at the 22 hpf stage, and this ectopic Cre could efficiently and specifically delete the red fluorescent protein (RFP) signal from the lens when zTg(cryaa:Cre-cryaa:EGFP) embryos were injected with the loxP-flanked RFP plasmid. The overexpression of Cre and EGFP did not impair zebrafish development or lens transparency. Accordingly, this zTg(cryaa:Cre-cryaa:EGFP) zebrafish line is a useful tool for gene editing, specifically with zebrafish lenses. Conclusions We established a zTg(cryaa:Cre-cryaa:EGFP) zebrafish line that can specifically express an active Cre recombinase in lens tissues. This transgenic zebrafish line can be used as a tool to specifically manipulate a gene in zebrafish lenses.
Collapse
Affiliation(s)
- Xuyan Peng
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Xiaolin Jia
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zheng Zhou, China
| | - Mengjiao Xue
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Mingjun Jiang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Dandan Chen
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Fengyan Zhang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Yanzhong Hu
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University School of Basic Medical Sciences. Kaifeng, China
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| |
Collapse
|
2
|
Jimenez Gonzalez A, Baranasic D, Müller F. Zebrafish regulatory genomic resources for disease modelling and regeneration. Dis Model Mech 2023; 16:dmm050280. [PMID: 37529920 PMCID: PMC10417509 DOI: 10.1242/dmm.050280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.
Collapse
Affiliation(s)
- Ada Jimenez Gonzalez
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London SW7 2AZ, UK
- MRC London Institute of Medical Sciences, London W12 0NN, UK
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
4
|
Progress in Gene-Editing Technology of Zebrafish. Biomolecules 2021; 11:biom11091300. [PMID: 34572513 PMCID: PMC8468279 DOI: 10.3390/biom11091300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
As a vertebrate model, zebrafish (Danio rerio) plays a vital role in the field of life sciences. Recently, gene-editing technology has become increasingly innovative, significantly promoting scientific research on zebrafish. However, the implementation of these methods in a reasonable and accurate manner to achieve efficient gene-editing remains challenging. In this review, we systematically summarize the development and latest progress in zebrafish gene-editing technology. Specifically, we outline trends in double-strand break-free genome modification and the prospective applications of fixed-point orientation transformation of any base at any location through a multi-method approach.
Collapse
|
5
|
Almeida MP, Welker JM, Siddiqui S, Luiken J, Ekker SC, Clark KJ, Essner JJ, McGrail M. Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Sci Rep 2021; 11:1732. [PMID: 33462297 PMCID: PMC7813866 DOI: 10.1038/s41598-021-81239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.
Collapse
Affiliation(s)
- Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.,Department III - Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sahiba Siddiqui
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jon Luiken
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|