1
|
Wang Y, Ma H, Liu Z, Zhao P, Liu J, Zhu H, Zhou Y, Man Y, Zhou X. The Elongation Factor 1 Alpha Promoter Drives the Functional Expression of Kir2A in Plutella xylostella Cells. Int J Mol Sci 2025; 26:3042. [PMID: 40243678 PMCID: PMC11989005 DOI: 10.3390/ijms26073042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cell lines and their corresponding expression plasmids are extensively utilized in the study of insect physiology and pathology. In this research, four single-cell cultured lines (Px4-1 to Px4-4) of Plutella xylostella were established from eggs. The promoter for the P. xylostella elongation factor 1α (PxEF1α), known for its high driving activity in cells, was cloned and used to construct expression plasmids. Dual-luciferase activity assays and EGFP expression analyses demonstrated that the PxEF1α promoter exhibited the strongest driving activity in Px4-2 cells, comparable to that of the immediate-early 1 promoter associated with the homologous region 5 enhancer (AcIE1hr5) from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). In contrast, the driving activity of PxEF1α in cells derived from Spodoptera frugiperda, Trichoplusia ni, and Helicoverpa armigera was lower. Furthermore, the PxEF1α promoter was successfully employed to drive inward rectifier potassium 2A (Kir2A) expression in Px4-2 cells. The electrophysiological properties of the insect Kir2A channel were successfully characterized for the first time. It was observed that the PxKir2A channel possesses typical inward rectifier potassium channel properties and can be inhibited by nanomolar concentrations of VU625 and VU590. This study offers a novel approach for the expression and investigation of foreign gene function in insect cells and provides a valuable tool for the in-depth study of key biomolecules in P. xylostella.
Collapse
Affiliation(s)
- Yinna Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haihao Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Zheming Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Piao Zhao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| |
Collapse
|
2
|
New insights into the proteins interacting with the promoters of silkworm fibroin genes. Sci Rep 2021; 11:15880. [PMID: 34354143 PMCID: PMC8342599 DOI: 10.1038/s41598-021-95400-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
The silkworm, Bombyx mori, is a silk-producing insect that has contributed greatly to human society. The silk gland of B. mori is a specialized organ responsible for synthesizing silk fibroin and sericin proteins under control of numerous factors. However, which factors are involved in direct silk protein synthesis regulation remains largely unknown. We report the identification of promoter-interacting proteins (PIPs) necessary for the regulation of genes encoding fibroin proteins, including the fibroin heavy chain (fibH), fibroin light chain (fibL), and a 25-kD polypeptide protein (P25). In the fourth larval molting stage (M4) or day 5 fifth-instar larvae (L5D5), a total of 198, 292, and 247 or 330, 305, and 460 proteins interacting with the promoter region of fibH, fibL and P25, respectively, were identified from the posterior silk gland by DNA pull-down combined with mass spectrometry. Many PIPs were particularly involved in ribosome- and metabolism-related pathways. Additionally, 135 and 212 proteins were identified as common PIPs of fibH, fibL and P25 in M4 and L5D5, respectively. Among all PIPs, we identified 31 potential transcription factors, such as Y-box and poly A-binding proteins, which play roles in nucleotide binding, ATP binding, or protein folding. This study provides the first in-depth profile of proteins interacting with fibroin gene promoters and contributes to a better understanding of silk protein synthesis regulation.
Collapse
|