1
|
Mondal S, Pal B, Sankaranarayanan R. Mechanistic understanding of bacterial FAALs and the role of their homologs in eukaryotes. Proteins 2025; 93:26-37. [PMID: 37615273 DOI: 10.1002/prot.26576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Fatty acids are used in fundamental cellular processes, such as membrane biogenesis, energy generation, post-translational modification of proteins, and so forth. These processes require the activation of fatty acids by adenosine triphosphate (ATP), followed by condensation with coenzyme-A (CoA), catalyzed by the omnipresent enzyme called Fatty acyl-CoA ligases (FACLs). However, Fatty acyl-AMP ligases (FAALs), the structural homologs of FACLs, operate in an unprecedented CoA-independent manner. FAALs transfer fatty acids to the acyl carrier protein (ACP) domain of polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) for the biosynthesis of various antibiotics, lipopeptides, virulent complex lipids, and so forth in bacteria. Recent structural and biochemical insights from our group provide a detailed understanding of the mode of CoA rejection and ACP acceptance by FAALs. In this review, we have discussed advances in the mechanistic, evolutionary, and functional understanding of FAALs and FAAL-like domains across life forms. Here, we are proposing a "Five-tier" mechanistic model to explain the specificity of FAALs. We further demonstrate how FAAL-like domains have been repurposed into a new family of proteins in eukaryotes with a novel function in lipid metabolism.
Collapse
Affiliation(s)
- Sudipta Mondal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CCMB Campus, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Yao M, Zhang L, Teng X, Lei Y, Xing X, Ren T, Pan Y, Zhang L, Li Z, Lin J, Zheng Y, Xing L, Zhou J, Wu C. Transcriptomic profiling of Dip2a in the neural differentiation of mouse embryonic stem cells. Comput Struct Biotechnol J 2024; 23:700-710. [PMID: 38292475 PMCID: PMC10825174 DOI: 10.1016/j.csbj.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The disconnected-interacting protein 2 homolog A (DIP2A), a member of disconnected-interacting 2 protein family, has been shown to be involved in human nervous system-related mental illness. This protein is highly expressed in the nervous system of mouse. Mutation of mouse DIP2A causes defects in spine morphology and synaptic transmission, autism-like behaviors, and defective social novelty [5], [27], indicating that DIP2A is critical to the maintenance of neural development. However, the role of DIP2A in neural differentiation has yet to be investigated. Objective To determine the role of DIP2A in neural differentiation, a neural differentiation model was established using mouse embryonic stem cells (mESCs) and studied by using gene-knockout technology and RNA-sequencing-based transcriptome analysis. Results We found that DIP2A is not required for mESCs pluripotency maintenance, but loss of DIP2A causes the neural differentiation abnormalities in both N2B27 and KSR medium. Functional knockout of Dip2a gene also decreased proliferation of mESCs by perturbation of the cell cycle and profoundly inhibited the expression of a large number of neural development-associated genes which mainly enriched in spinal cord development and postsynapse assembly. Conclusions The results of this report demonstrate that DIP2A plays an essential role in regulating differentiation of mESCs towards the neural fate.
Collapse
Affiliation(s)
- Mingze Yao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan 030006, China
| | - Xiaojuan Teng
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yu Lei
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoyu Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tinglin Ren
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yuanqing Pan
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Liwen Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yaowu Zheng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Patil GS, Kinatukara P, Mondal S, Shambhavi S, Patel KD, Pramanik S, Dubey N, Narasimhan S, Madduri MK, Pal B, Gokhale RS, Sankaranarayanan R. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation. eLife 2021; 10:70067. [PMID: 34490847 PMCID: PMC8460268 DOI: 10.7554/elife.70067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.
Collapse
Affiliation(s)
- Gajanan S Patil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Sudipta Mondal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sakshi Shambhavi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ketan D Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Surabhi Pramanik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Noopur Dubey
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|