1
|
Mbithi F, Worsley PR. Adhesives for medical application - Peel strength testing and evaluation of biophysical skin response. J Mech Behav Biomed Mater 2023; 148:106168. [PMID: 37847959 DOI: 10.1016/j.jmbbm.2023.106168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Medical adhesives are commonly used for securing wound dressings and medical devices used for diagnostic or therapeutic purposes. Mechanical irritation of skin due to adhesive stripping and repeated application can lead to discomfort and device removal. This study aims to examine the peel strength and skin response to different medical adhesives in a cohort of healthy volunteers. METHOD Twelve healthy participants were recruited for peel strength testing of three candidate adhesive tapes, and evaluation of the skin response after adhesive removal. A modified ASTM D903 peel strength testing was performed at 180° peeling angle and a rate of 300 mm/min on the forehead, upper back and forearm skin. A longitudinal study was conducted on the forearm and back, with the adhesive samples left in-situ for up to 60 h for analysis of repeat application. The effects of two skin preparation approaches (water and alcohol cleaning) prior to adhesive application were also assessed. Skin biophysical properties were assessed at baseline and at various timepoints following adhesive removal using transepidermal water loss (TEWL), erythema and hydration. RESULTS Peel strength reduced uniformly with repeat application over prolonged periods for all the adhesive samples tested. Skin preparation with water and alcohol cleansing prior to adhesive application increased peel strength at both the back (1.1% and 2.9%), and forearm (21.3% and 20%) sites. There was statistically significant increase from baseline to post-tape application for TEWL, skin redness and hydration (p < 0.001). However, there were no statistically significant differences between adhesive types (TEWL: p = 0.38, SR: p = 0.53, HY: p = 0.46). TEWL increased the most post-adhesion across all test sites and adhesive samples with repeat application (p < 0.05). Two-way ANOVA tests revealed no statistically significant interactions between the effects of application duration and adhesive on skin redness or TEWL for both the back and forearm sites (p > 0.05), though a significant interaction was indicted for hydration at the back site (p = 0.01). CONCLUSION This study revealed that site and duration of adhesive application effected peel strength. The corresponding changes in skin properties identified that skin barrier function was disrupted with long-term application of adhesives. The back site was identified to be most reliable for adhesion testing and skin response assessment for future work.
Collapse
Affiliation(s)
- Florence Mbithi
- Skin Sensing Research Group, School of Health Sciences, University of Southampton, Southampton, UK.
| | - Peter R Worsley
- Skin Sensing Research Group, School of Health Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Diosa JG, Moreno R, Chica EL, Buganza-Tepole A. Impact of Indenter Size and Microrelief Anisotropy on the Tribological Behavior of Human Skin. J Biomech Eng 2023; 145:101008. [PMID: 37382599 DOI: 10.1115/1.4062848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Everyday, we interact with screens, sensors, and many other devices through contact with the skin. Experimental efforts have increased our knowledge of skin tribology but are challenged by the fact that skin has a complex structure, undergoes finite deformations, has nonlinear material response, and has properties that vary with anatomical location, age, sex, and environmental conditions. Computational models are powerful tools to dissect the individual contribution of these variables to the overall frictional response. Here, we present a three-dimensional high-fidelity multilayer skin computational model including a detailed surface topography or skin microrelief. Four variables are explored: local coefficient of friction (COF), indenter size, mechanical properties of the stratum corneum, and displacement direction. The results indicate that the global COF depends nonlinearly on the local COF, implying a role for skin deformation on the friction response. The global COF is also influenced by the ratio of the indenter size to the microrelief features, with larger indenters smoothing out the role of skin topography. Changes in stiffness of the uppermost layer of skin associated with humidity have a substantial effect on both the contact area and the reaction forces, but the overall changes in the COF are small. Finally, for the microrelief tested, the response can be considered isotropic. We anticipate that this model and results will enable the design of materials and devices for a desired interaction against skin.
Collapse
Affiliation(s)
- Juan G Diosa
- Department of Biomedical Engineering, Universidad CES, Medellín 050021, Colombia; Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Ricardo Moreno
- Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Edwin L Chica
- Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Adrian Buganza-Tepole
- School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
Oftadeh R, Azadi M, Donovan M, Langer J, Liao IC, Ortiz C, Grodzinsky AJ, Luengo GS. Poroelastic behavior and water permeability of human skin at the nanoscale. PNAS NEXUS 2023; 2:pgad240. [PMID: 37614672 PMCID: PMC10443659 DOI: 10.1093/pnasnexus/pgad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Topical skin care products and hydrating compositions (moisturizers or injectable fillers) have been used for years to improve the appearance of, for example facial wrinkles, or to increase "plumpness". Most of the studies have addressed these changes based on the overall mechanical changes associated with an increase in hydration state. However, little is known about the water mobility contribution to these changes as well as the consequences to the specific skin layers. This is important as the biophysical properties and the biochemical composition of normal stratum corneum, epithelium, and dermis vary tremendously from one another. Our current studies and results reported here have focused on a novel approach (dynamic atomic force microscopy-based nanoindentation) to quantify biophysical characteristics of individual layers of ex vivo human skin. We have discovered that our new methods are highly sensitive to the mechanical properties of individual skin layers, as well as their hydration properties. Furthermore, our methods can assess the ability of these individual layers to respond to both compressive and shear deformations. In addition, since human skin is mechanically loaded over a wide range of deformation rates (frequencies), we studied the biophysical properties of skin over a wide frequency range. The poroelasticity model used helps to quantify the hydraulic permeability of the skin layers, providing an innovative method to evaluate and interpret the impact of hydrating compositions on water mobility of these different skin layers.
Collapse
Affiliation(s)
- Ramin Oftadeh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mojtaba Azadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Engineering, San Francisco State University, San Francisco, CA 94132, USA
| | - Mark Donovan
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| | | | - I-Chien Liao
- L'OREAL Research and Innovation, Clark, NJ 07066, USA
| | - Christine Ortiz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gustavo S Luengo
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| |
Collapse
|
4
|
Martinovic D, Lupi-Ferandin S, Tokic D, Usljebrka M, Rados A, Pojatina A, Kadic S, Puizina E, Mihovilovic A, Kumric M, Vilovic M, Leskur D, Bozic J. Objective Skin Quality Assessment after Reconstructive Procedures for Facial Skin Defects. J Clin Med 2022; 11:jcm11154471. [PMID: 35956089 PMCID: PMC9369767 DOI: 10.3390/jcm11154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Local random skin flaps and skin grafts are everyday surgical techniques used to reconstruct skin defects. Although their clinical advantages and disadvantages are well known, there are still uncertainties with respect to their long-term results. Hence, the aim of this study was to evaluate outcomes more than one-year post operatively using objective measurement devices. The study included 31 facial defects reconstructed with local random flap, 30 facial defects reconstructed with split-thickness skin grafts (STSGs) and 30 facial defects reconstructed with full-thickness skin grafts (FTSGs). Skin quality was objectively evaluated using MP6 noninvasive probes (Courage + Khazaka GmbH, Cologne, Germany), which measure melanin count, erythema, hydration, sebum, friction and transepidermal water loss. The results showed that there were no significant differences in melanin count, erythema, hydration, sebum level, friction value and transepidermal water loss (TEWL) between the site reconstructed with random local flaps and the same site on the healthy contralateral side of the face. However, both FTSGs and STSGs showed significantly higher levels in terms of TEWL and erythema, whereas the levels of hydration, sebum and friction were significantly lower compared to the healthy contralateral side. Moreover, STSGs resulted in a significant difference in melanin count. These findings imply that the complex pathophysiology of the wound-healing process possibly results in better skin-quality outcomes for random local flaps than skin autografts. Consequently, this suggests that random local flaps should be implemented whenever possible for the reconstruction of facial region defects.
Collapse
Affiliation(s)
- Dinko Martinovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (M.V.)
| | - Slaven Lupi-Ferandin
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Daria Tokic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia;
| | - Mislav Usljebrka
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Andrija Rados
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Ante Pojatina
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Sanja Kadic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Ema Puizina
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Ante Mihovilovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (S.L.-F.); (M.U.); (A.R.); (A.P.); (S.K.); (E.P.); (A.M.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (M.V.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (M.V.)
| | - Dario Leskur
- Department of Pharmacy, University of Split Schwool of Medicine, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (M.V.)
- Correspondence: ; Tel.: +385-21-557-871; Fax: +385-21-557-905
| |
Collapse
|
5
|
Muddassir M, Limbert G, Navarro-Alarcon D. Development of a numerical multi-layer model of skin subjected to pulsed laser irradiation to optimise thermal stimulation in photorejuvenation procedure. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106653. [PMID: 35144148 DOI: 10.1016/j.cmpb.2022.106653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE This paper presents the development of a 3D physics-based numerical model of skin capable of representing the laser-skin photo-thermal interactions occurring in skin photorejuvenation treatment procedures. The aim of this model was to provide a rational and quantitative basis to control and predict temperature distribution within the layered structure of skin. Ultimately, this mathematical and numerical modelling platform will guide the design of an automatic robotic controller to precisely regulate skin temperature at desired depths and for specific durations. METHODS The Pennes bioheat equation was used to account for heat transfer in a 3D multi-layer model of skin. The effects of blood perfusion, skin pigmentation and various convection conditions are also incorporated in the proposed model. The photo-thermal effect due to pulsed laser light on skin is computed using light diffusion theory. The physics-based constitutive model was numerically implemented using a combination of finite volume and finite difference techniques. Direct sensitivity routines were also implemented to assess the influence of constitutive parameters on temperature. A stability analysis of the numerical model was conducted. RESULTS Finally, the numerical model was exploited to assess its ability to predict temperature distribution and thermal damage via a multi-parametric study which accounted for a wide array of biophysical parameters such as light coefficients of absorption for individual skin layers and melanin levels (correlated with ethnicity). It was shown how critical is the link between melanin content, laser light characteristics and potential thermal damage to skin. CONCLUSIONS The developed photo-thermal model of skin-laser interactions paves the way for the design of an automated simulation-driven photorejuvenation robot, thus alleviating the need for inconsistent and error-prone human operators.
Collapse
Affiliation(s)
- Muhammad Muddassir
- Department of Mechanical Engineering, The Hong Kong Polytechnic University (PolyU), KLN, Hong Kong.
| | - Georges Limbert
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa.
| | - David Navarro-Alarcon
- Department of Mechanical Engineering, The Hong Kong Polytechnic University (PolyU), KLN, Hong Kong.
| |
Collapse
|
6
|
A new device for the combined measurement of friction and through-thickness deformation on ex vivo skin samples. J Mech Behav Biomed Mater 2022; 130:105141. [PMID: 35318168 DOI: 10.1016/j.jmbbm.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Skin irritation is a common phenomenon that becomes a real concern when caused by the use of medical devices. Because the materials used for the design of these devices are usually carefully selected for chemical compatibility with the skin, it is reasonable to assume that the irritations result from the mechanical interaction between the devices and the skin. The aim of this work was to develop a new device to study both the shear strains in the layers of the skin, using Digital Image Correlation (DIC), and the friction behaviour of ex vivo skin interacting with objects. Pig skin samples with various surface preparations were tested in friction experiments involving different contacting materials encountered in the conception of medical devices. The measure of the static and dynamic coefficients of friction as well as the length of adhesion has highlighted the great influence of skin surface conditioning on friction properties. Strain maps obtained through DIC provided insights into the impact of friction and adhesion effects on shear strain distribution in the skin as a function of depth beneath its surface.
Collapse
|
7
|
Cabral MD, Patel DR, Greydanus DE, Deleon J, Hudson E, Darweesh S. Medical perspectives on pediatric sports medicine–Selective topics. Dis Mon 2022; 68:101327. [DOI: 10.1016/j.disamonth.2022.101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Chen S, Qiao X, Yang J, Ru W, Tang W, Zhang S. Research on tactile perception by skin friction based on a multimodal method. Skin Res Technol 2021; 28:280-290. [PMID: 34935201 PMCID: PMC9907616 DOI: 10.1111/srt.13127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tactile perception is an essential function of skin. As this research involves many fields, such as skin friction, psychology, and neuroscience, the achievement tactile perception is scattered in various fields with different research methods. Therefore, it is necessary to study the whole tactile loop in a multimodal way, synchronizing all tactile information. MATERIALS AND METHODS To measure information from touch to haptics, we developed a specially designed measuring platform connecting to an electroencephalogram (EEG) recording system. Sandpapers with different roughness were used as samples. First, the surface properties were measured in tribological experiments. Second, psychophysical experiments were conducted to assess the volunteers' cognition of samples' roughness. Third, the mechanical parameters and EEG were measured at the same time during fingertip sliding on samples. Then, the data of all four tactile elements were processed and analyzed separately. The characteristic features were extracted from those data in the time-frequency domain. Furthermore, the correlation coefficient was calculated in the pairwise comparison of each element to evaluate the feasibility of the multimodal method in the study of tactile perception. RESULTS The 600-mesh sandpaper has the largest Ra, Rz, Rsm, and particle size. The normal load, friction force, spectral centroid, and α- and β-wave energy ratios of EEG at chosen electrodes have significant differences and correlations between 3000- and 600-mesh sandpaper in general. CONCLUSION This multimodal method could be used in the study of tactile perception, which is a comprehensive way to observe the whole tactile loop from multiple perspectives.
Collapse
Affiliation(s)
- Si Chen
- Fluid Machinery Center, Jiangsu University, Zhenjiang, China
| | - Xiaoqi Qiao
- Fluid Machinery Center, Jiangsu University, Zhenjiang, China
| | - Jianan Yang
- Fluid Machinery Center, Jiangsu University, Zhenjiang, China
| | - Weimin Ru
- Fluid Machinery Center, Jiangsu University, Zhenjiang, China
| | - Wei Tang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
9
|
Diosa JG, Moreno R, Chica EL, Villarraga JA, Tepole AB. Changes in the three-dimensional microscale topography of human skin with aging impact its mechanical and tribological behavior. PLoS One 2021; 16:e0241533. [PMID: 34242217 PMCID: PMC8270165 DOI: 10.1371/journal.pone.0241533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Human skin enables interaction with diverse materials every day and at all times. The ability to grasp objects, feel textures, and perceive the environment depends on the mechanical behavior, complex structure, and microscale topography of human skin. At the same time, abrasive interactions, such as sometimes occur with prostheses or textiles, can damage the skin and impair its function. Previous theoretical and computational efforts have shown that skin's surface topography or microrelief is crucial for its tribological behavior. However, current understanding is limited to adult surface profiles and simplified two-dimensional simulations. Yet, the skin has a rich set of features in three dimensions, and the geometry of skin is known to change with aging. Here we create a numerical model of a dynamic indentation test to elucidate the effect of changes in microscale topography with aging on the skin's response under indentation and sliding contact with a spherical indenter. We create three different microrelief geometries representative of different ages based on experimental reports from the literature. We perform the indentation and sliding steps, and calculate the normal and tangential forces on the indenter as it moves in three distinct directions based on the characteristic skin lines. The model also evaluates the effect of varying the material parameters. Our results show that the microscale topography of the skin in three dimensions, together with the mechanical behavior of the skin layers, lead to distinctive trends on the stress and strain distribution. The major finding is the increasing role of anisotropy which emerges from the geometric changes seen with aging.
Collapse
Affiliation(s)
- Juan G. Diosa
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Moreno
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Edwin L. Chica
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Junes A. Villarraga
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Adrian B. Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
10
|
Affiliation(s)
| | - Peter Theobald
- Medical Engineering Research Group School of Engineering Cardiff University Cardiff UK
| |
Collapse
|
11
|
Lee G, Son JH, Lee S, Kim SW, Kim D, Nguyen NN, Lee SG, Cho K. Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002606. [PMID: 33977042 PMCID: PMC8097346 DOI: 10.1002/advs.202002606] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Human skin plays a critical role in a person communicating with his or her environment through diverse activities such as touching or deforming an object. Various electronic skin (E-skin) devices have been developed that show functional or geometrical superiority to human skin. However, research into stretchable E-skin that can simultaneously distinguish materials and textures has not been established yet. Here, the first approach to achieving a stretchable multimodal device is reported, that operates on the basis of various electrical properties of piezoelectricity, triboelectricity, and piezoresistivity and that exceeds the capabilities of human tactile perception. The prepared E-skin is composed of a wrinkle-patterned silicon elastomer, hybrid nanomaterials of silver nanowires and zinc oxide nanowires, and a thin elastomeric dielectric layer covering the hybrid nanomaterials, where the dielectric layer exhibits high surface roughness mimicking human fingerprints. This versatile device can identify and distinguish not only mechanical stress from a single stimulus such as pressure, tensile strain, or vibration but also that from a combination of multiple stimuli. With simultaneous sensing and analysis of the integrated stimuli, the approach enables material discrimination and texture recognition for a biomimetic prosthesis when the multifunctional E-skin is applied to a robotic hand.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Jong Hyun Son
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Siyoung Lee
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Seong Won Kim
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Daegun Kim
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Nguyen Ngan Nguyen
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| | - Seung Goo Lee
- Department of ChemistryUniversity of UlsanUlsan44 610Korea
| | - Kilwon Cho
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673Korea
| |
Collapse
|
12
|
Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, Donnelly RF. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. NANO-MICRO LETTERS 2021; 13:93. [PMID: 34138349 PMCID: PMC8006208 DOI: 10.1007/s40820-021-00611-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/14/2023]
Abstract
Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Melissa Kirkby
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Majid Shabani
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Italian Institute of Technology, 80125, Naples, Italy
| | - Marco Carlotti
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
13
|
A review of the neurobiomechanical processes underlying secure gripping in object manipulation. Neurosci Biobehav Rev 2021; 123:286-300. [PMID: 33497782 DOI: 10.1016/j.neubiorev.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
O'SHEA, H. and S. J. Redmond. A review of the neurobiomechanical processes underlying secure gripping in object manipulation. NEUROSCI BIOBEHAV REV 286-300, 2021. Humans display skilful control over the objects they manipulate, so much so that biomimetic systems have yet to emulate this remarkable behaviour. Two key control processes are assumed to facilitate such dexterity: predictive cognitive-motor processes that guide manipulation procedures by anticipating action outcomes; and reactive sensorimotor processes that provide important error-based information for movement adaptation. Notwithstanding increased interdisciplinary research interest in object manipulation behaviour, the complexity of the perceptual-sensorimotor-cognitive processes involved and the theoretical divide regarding the fundamentality of control mean that the essential mechanisms underlying manipulative action remain undetermined. In this paper, following a detailed discussion of the theoretical and empirical bases for understanding human dexterous movement, we emphasise the role of tactile-related sensory events in secure object handling, and consider the contribution of certain biophysical and biomechanical phenomena. We aim to provide an integrated account of the current state-of-art in skilled human-object interaction that bridges the literature in neuroscience, cognitive psychology, and biophysics. We also propose novel directions for future research exploration in this area.
Collapse
|
14
|
Graham HK, McConnell JC, Limbert G, Sherratt MJ. How stiff is skin? Exp Dermatol 2020; 28 Suppl 1:4-9. [PMID: 30698873 DOI: 10.1111/exd.13826] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
The measurement of the mechanical properties of skin (such as stiffness, extensibility and strength) is a key step in characterisation of both dermal ageing and disease mechanisms and in the assessment of tissue-engineered skin replacements. However, the biomechanical terminology and plethora of mathematical analysis approaches can be daunting to those outside the field. As a consequence, mechanical studies are often inaccessible to a significant proportion of the intended audience. Furthermore, devices for the measurement of skin function in vivo generate relative values rather than formal mechanical measures, therefore limiting the ability to compare studies. In this viewpoint essay, we discuss key biomechanical concepts and the influence of technical and biological factors (including the nature of the testing apparatus, length scale, donor age and anatomical site) on measured mechanical properties such as stiffness. Having discussed the current state-of-the-art in macro-mechanical and micromechanical measuring techniques and in mathematical and computational modelling methods, we then make suggestions as to how these approaches, in combination with 3D X-ray imaging and mechanics methods, may be adopted into a single strategy to characterise the mechanical behaviour of skin.
Collapse
Affiliation(s)
- Helen K Graham
- Division of Musculoskeletal& Dermatological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James C McConnell
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Biomechanics and Mechanobiology Laboratory, Biomedical Engineering Division, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Henao SC, Cuartas-Escobar S, Ramírez J. Coefficient of Friction Measurements on Transfemoral Amputees. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotri.2020.100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
|
17
|
Vidal AB, Monezi LA, Sarro KJ, Barros RMLD. Analysis of required coefficient of friction in running and walking. Sports Biomech 2019; 20:768-780. [PMID: 31070107 DOI: 10.1080/14763141.2019.1601251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The popularity of running has increased over the past few years. However, just a few studies in running have focused on the friction between surface and shoe/foot. Changes in friction can affect aspects of human motion, such as safety, motion pattern and efficiency among others. The aim was to investigate the effects of cadence (walk, self-selected running and imposed-running), stance sub-phases (absorption and propulsion) and footwear (barefoot and shod) on the required coefficient of friction (RCOF) of regular runners. Twenty healthy runners (12 males, 8 females, 29.4 ± 4.9 years, 70.4 ± 9.6 kg) participated in this study. Two force plates were used to measure the ground reaction forces (GRF) in order to calculate the RCOF for each condition and the stance phase was divided in sub-phases. In walk, the RCOF was smaller in the absorption than in propulsion phase (p < 0.001). Results evidenced effects of the cadence (p < 0.001), stance sub-phases (p < 0.001) and footwear (p < 0.001) on the RCOF. There was interaction effect in cadence with stance sub-phases (p < 0.001) and footwear with stance sub-phases (p < 0.001). Our results show RCOF is influenced by cadence and footwear condition in the absorption phase.
Collapse
Affiliation(s)
- Andrea Brugnoli Vidal
- Laboratory of Instrumentation for Biomechanics, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | - Lucas Antônio Monezi
- Laboratory of Instrumentation for Biomechanics, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | - Karine Jacon Sarro
- Laboratory of Instrumentation for Biomechanics, Faculty of Physical Education, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
18
|
Limbert G, Masen MA, Pond D, Graham HK, Sherratt MJ, Jobanputra R, McBride A. Biotribology of the ageing skin—Why we should care. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Lee T, Vaca EE, Ledwon JK, Bae H, Topczewska JM, Turin SY, Kuhl E, Gosain AK, Tepole AB. Improving tissue expansion protocols through computational modeling. J Mech Behav Biomed Mater 2018; 82:224-234. [PMID: 29627733 PMCID: PMC6028355 DOI: 10.1016/j.jmbbm.2018.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/29/2023]
Abstract
Tissue expansion is a common technique in reconstructive surgery used to grow skin in vivo for correction of large defects. Despite its popularity, there is a lack of quantitative understanding of how stretch leads to growth of new skin. This has resulted in several arbitrary expansion protocols that rely on the surgeon's personal training and experience rather than on accurate predictive models. For example, choosing between slow or rapid expansion, or small or large inflation volumes remains controversial. Here we explore four tissue expansion protocols by systematically varying the inflation volume and the protocol duration in a porcine model. The quantitative analysis combines three-dimensional photography, isogeometric kinematics, and finite growth theory. Strikingly, all four protocols generate similar peak stretches, but different growth patterns: Smaller filling volumes of 30 ml per inflation did not result in notable expander-induced growth neither for the short nor for the long protocol; larger filling volumes of 60 ml per inflation trigger skin adaptation, with larger expander-induced growth in regions of larger stretch, and more expander-induced growth for the 14-day compared to the 10-day expansion protocol. Our results suggest that expander-induced growth is not triggered by the local stretch alone. While stretch is clearly a driver for growth, the local stretch at a given point is not enough to predict the expander-induced growth at that location. From a clinical perspective, our study suggests that longer expansion protocols are needed to ensure sufficient growth of sizable skin patches.
Collapse
Affiliation(s)
- Taeksang Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Elbert E Vaca
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joanna K Ledwon
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hanah Bae
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jolanta M Topczewska
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sergey Y Turin
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, CA 94305, USA
| | - Arun K Gosain
- Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
20
|
Yang J, Yu L, Wang L, Wang W, Cui J. The estimation method of friction in unconfined compression tests of liver tissue. Proc Inst Mech Eng H 2018; 232:573-587. [PMID: 29749802 DOI: 10.1177/0954411918774377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In traditional unconfined compression tests, the friction between platform and specimen is often considered negligible or minimized by lubrication or other means. However, friction can affect the estimation of material parameters. The percentage difference in radial deformation was investigated in this study. A novel friction estimation method was established and verified using a finite element method. The proposed method was based on the radial deformation during the compression process. Three different hyperelastic material parameters of liver tissue were applied in the simulations. The hyperelastic parameters H1 were obtained by no-slip compression tests, while the others were extracted from the literature. The results showed that the percentage difference in radial deformation was mainly influenced by the friction coefficient and diameter-to-height ( d/ h) ratio of the specimen in unconfined compression tests. The percentage difference increased as the friction coefficient and d/ h increased. Different d/ h and friction coefficient values were tested to validate the proposed method, and the accuracy was estimated to exceed 86%. An optimization strategy for material parameters in unconfined compression tests was proposed accordingly.
Collapse
Affiliation(s)
- Jing Yang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Lingtao Yu
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Lan Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Wenjie Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Jianwei Cui
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| |
Collapse
|
21
|
Pond D, McBride A, Davids L, Reddy B, Limbert G. Microstructurally-based constitutive modelling of the skin – Linking intrinsic ageing to microstructural parameters. J Theor Biol 2018; 444:108-123. [DOI: 10.1016/j.jtbi.2018.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
22
|
Mechanisms of tactile sensory deterioration amongst the elderly. Sci Rep 2018; 8:5303. [PMID: 29674633 PMCID: PMC5908919 DOI: 10.1038/s41598-018-23688-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/14/2018] [Indexed: 11/08/2022] Open
Abstract
It is known that roughness-smoothness, hardness-softness, stickiness-slipperiness and warm-cold are predominant perceptual dimensions in macro-, micro- and nano- texture perception. However, it is not clear to what extent active tactile texture discrimination remains intact with age. The general decrease in tactile ability induces physical and emotional dysfunction in elderly, and has increasing significance for an aging population. We report a method to quantify tactile acuity based on blinded active exploration of systematically varying micro-textured surfaces and a same-different paradigm. It reveals that elderly participants show significantly reduced fine texture discrimination ability. The elderly group also displays statistically lower finger friction coefficient, moisture and elasticity, suggesting a link. However, a subpopulation of the elderly retains discrimination ability irrespective of cutaneous condition and this can be related to a higher density of somatosensory receptors on the finger pads. Skin tribology is thus not the primary reason for decline of tactile discrimination with age. The remediation of cutaneous properties through rehydration, however leads to a significantly improved tactile acuity. This indicates unambiguously that neurological tactile loss can be temporarily compensated by restoring the cutaneous contact mechanics. Such mechanical restoration of tactile ability has the potential to increase the quality of life in elderly.
Collapse
|
23
|
Limbert G, Kuhl E. On skin microrelief and the emergence of expression micro-wrinkles. SOFT MATTER 2018; 14:1292-1300. [PMID: 29319711 DOI: 10.1039/c7sm01969f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the course of a life time, as a result of adaptive mechanobiological processes (e.g. ageing), or the action of external physical factors such as mechanical loading, the human skin is subjected to, and hosts complex biophysical processes. These phenomena typically operate through a complex interplay, that, ultimately, is responsible for the evolutive geometrical characteristics of the skin surface. Wrinkles are a manifestation of these effects. Although numerous theoretical models of wrinkles arising in multi-layered structures have been proposed, they typically apply to idealised geometries. In the case of skin, which can be viewed as a geometrically complex multi-layer assembly, it is pertinent to question whether the natural skin microrelief could play a significant role in conditioning the characteristics of compression-induced micro-wrinkles by acting as an array of geometrical imperfections. Here, we explore this question through the development of an anatomically-based finite strain parametric finite element model of the skin, represented as a stratum corneum layer on top of a thicker and softer substrate. Our study suggests that skin microrelief could be the dominant factor conditioning micro-wrinkle characteristics for moderate elastic modulus ratios between the two layers. Beyond stiffness ratios of 100, other factors tend to overwrite the effects of skin microrelief. Such stiffness ratio fluctuations can be induced by changes in relative humidity or particular skin conditions and can therefore have important implications for skin tribology.
Collapse
Affiliation(s)
- G Limbert
- National Centre for Advanced Tribology at Southampton, Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|
24
|
Limbert G. Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci 2017; 473:20170257. [PMID: 28804267 PMCID: PMC5549575 DOI: 10.1098/rspa.2017.0257] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.
Collapse
Affiliation(s)
- Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
- Biomechanics and Mechanobiology Laboratory, Biomedical Engineering Division, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| |
Collapse
|