1
|
Ulker Z, Bozbay R, Buyuk SD, Orakdogen N. Eco-friendly property modulation of biobased gels of carboxymethyl cellulose-integrated poly(tertiary amine)s for the removal of azo-food dyes. Int J Biol Macromol 2024; 282:137199. [PMID: 39489245 DOI: 10.1016/j.ijbiomac.2024.137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Anionic polysaccharide-based gels enable the design of biobased materials with biochemical properties, non-toxic and natural origin. A new set of cationic gels was prepared from carboxymethylcellulose (CMC)-doped tertiary amino functional cationic monomers 2-(dimethylamino)ethyl methacrylate and N-(3-(dimethylamino)propyl) methacrylamide via the formation of semi-interpenetrated network (semi-IPN) at different polymerization temperatures, Tprep. A detailed understanding of the temperature-dependent synthesis and physicochemical response is required for the design of interpenetrating networks with CMC as an adsorbent that provides effective sources for the removal of azo-food dyes such as tartrazine and carmoisine from aqueous solutions. The variation of elasticity and swelling properties with respect to polymerization temperature was investigated. CMC-integration and polymerization temperature played a decisive role in the compressive elasticity. Incorporation of CMC into copolymer matrix led to a significant increase in elasticity of semi-IPNs, while mechanically weaker gels were obtained with increasing Tprep. Addition of CMC increased the swelling modulus of semi-IPNs formed at -18 °C by 2.6-fold. While the transparency changed depending on Tprep and microstructure, addition of CMC decreased the swelling rate of gels at all polymerization temperatures. The compressive modulus decreased with the swelling process in accordance with the Rubber elasticity theory. Semi-IPN gels showed stable swelling against pH-change in aqueous solutions and exhibited excellent pH-sensitivity significantly in low pH. A 4 to 12 fold decrease in maximum volume was observed by varying the pH between 2.1 and 9.8. The correlation between polymerization temperature and removal of azo-food dyes; tartrazine and carmoisine from contaminated wastewater with CMC-based gels was studied. Dynamic adsorption equilibrium was reached in 30 min, and tartrazine and carmoisine removal performances varied between 92.8 % and 98.4 %. respectively. The adsorption data for azo-dyes were evaluated by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Patterson, Sips, and Tooth isotherm models, but were best described by Langmuir and Redlich-Patterson models as they gave the highest correlation. Pseudo-first order, pseudo-second order, Elovich, Avrami kinetic and intra-particle diffusion models were investigated and dye adsorption was represented by pseudo-second-order model. After the adsorption process, semi-IPNs can easily be regenerated and effectively reused over five cycles. The study provided new insights towards the facile and sustainable synthesis of eco-friendly multifunctional CMC-based gels carrying tertiary amino groups for effective removal of azo-based food colorants.
Collapse
Affiliation(s)
- Zeynep Ulker
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey
| | - Rabia Bozbay
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey; Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sebnem Duygu Buyuk
- Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Nermin Orakdogen
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
2
|
Regulation Mechanism for Friction Coefficient of Poly(vinylphosphoric acid) (PVPA) Superlubricity System Based on Ionic Properties. NANOMATERIALS 2022; 12:nano12132308. [PMID: 35808147 PMCID: PMC9268071 DOI: 10.3390/nano12132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023]
Abstract
Adjustable lubrication aims to achieve active control of the relative motion of the friction interface, providing a new idea for intelligent operation. A new phenomenon of sudden changes of friction coefficient (COF) in the poly(vinylphosphoric acid) (PVPA) superlubricity system by mixing different lubricants, was found in this study. It was found that anions were the critical factor for the COF change. The change degrees of the COF were investigated by a universal micro tribometer (UMT). A quartz crystal microbalance (QCM)-D was used to analyze the adsorption quantity of anions on the PVPA surface. The hydratability of the PVPA interface was controlled by changing the anionic properties (the amount of charge and structure), thus regulating the COF. The adsorption difference of anions is an important reasoning of how anionic properties can regulate the hydratability. It was analyzed by molecular dynamics simulation. For anions carrying different numbers of charges or double bonds, the adsorption quantity of anions was mainly affected by the adsorption degree on the PVPA surface, while the adsorption quantity of anions with different molecular configuration was synergistically regulated by the adsorption degree and adsorption area of anions on the PVPA surface. This work can be used to develop smart surfaces for applications.
Collapse
|
3
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
4
|
Seddon WD, Alfhaid L, Dunbar ADF, Geoghegan M, Williams NH. Adhesion of Grafted-to Polyelectrolyte Brushes Functionalized with Calix[4]resorcinarene and Deposited as a Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13843-13852. [PMID: 33172276 DOI: 10.1021/acs.langmuir.0c02236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte adhesives, either poly[2-(dimethylamino)ethyl methacrylate] or poly(methacrylic acid), functionalized with a surface-active calix[4]resorcinarene were grafted onto silicon wafers. Adhesion studies on these grafted-to brushes using polyelectrolyte hydrogels of opposite charge showed that it is the calix[4]resorcinarene, rather than adsorption of polyelectrolyte monomers, that adheres the brush to the silicon substrate. The adhesion measured was similar to that measured using polymers grafted from the surface, and was stronger than a control layer of poly(vinyl acetate) under the same test conditions. The limiting factor was determined to be adhesive failure at the hydrogel-brush interface, rather than the brush-silicon interface. Therefore, the adhesion has not been adversely affected by changing from a grafted-from to a grafted-to brush, demonstrating the possibility of a one-pot approach to creating switchable adhesives.
Collapse
Affiliation(s)
- William D Seddon
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Latifah Alfhaid
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Alan D F Dunbar
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Nicholas H Williams
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
5
|
Alfhaid L, Williams NH, Geoghegan M. Adhesion between oppositely charged polyelectrolytes in salt solution. J Appl Polym Sci 2020. [DOI: 10.1002/app.49130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Latifah Alfhaid
- Department of Physics and AstronomyUniversity of Sheffield Sheffield UK
- Department of Physics, College of ScienceUniversity of Ha'il Hail Saudi Arabia
| | | | - Mark Geoghegan
- Department of Physics and AstronomyUniversity of Sheffield Sheffield UK
| |
Collapse
|
6
|
Hall AR, Blakeman JT, Eissa AM, Chapman P, Morales-García AL, Stennett L, Martin O, Giraud E, Dockrell DH, Cameron NR, Wiese M, Yakob L, Rogers ME, Geoghegan M. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chem Sci 2020. [DOI: 10.1039/d0sc03298k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Force spectroscopy was used to measure the adhesion of Leishmania to synthetic mimics of galectins on the sand fly midgut.
Collapse
|
7
|
Tanc B, Orakdogen N. Insight into (alkyl)methacrylate-based copolymer/sepiolite nanocomposite cryogels containing amino and sulfonic acid groups: Optimization of network properties and elasticity via cryogelation process. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Tanc B, Orakdogen N. A phenomenological approach for structure-property relationship of polybasic cryogels based on n-alkyl methacrylate esters: Anion-specific effect on swelling kinetics and elasticity. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xu X, Billing M, Ruths M, Klok HA, Yu J. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective. Chem Asian J 2018; 13:3411-3436. [PMID: 30080310 DOI: 10.1002/asia.201800920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 11/11/2022]
Abstract
The unique functionality of polyelectrolyte brushes depends on several types of specific interactions, including solvent structure effects, hydrophobic forces, electrostatic interactions, and specific ion interactions. Subtle variations in the solution environment can lead to conformational and surface structural changes of the polyelectrolyte brushes, which are mainly discussed from a surface-interaction perspective in this Focus Review. A brief overview is given of recent theoretical and experimental progress in the structure of polyelectrolyte brushes in various environments. Two important techniques for surface-force measurements are described, the surface forces apparatus (SFA) and atomic force microscopy (AFM), and some recent results on polyelectrolyte brushes are shown. Lastly, this Focus Review highlights the use of these surface-grafted polyelectrolyte brushes in the creation of functional surfaces for various applications, including nonfouling surfaces, boundary lubricants, and stimuli-responsive surfaces.
Collapse
Affiliation(s)
- Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Mark Billing
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Harm-Anton Klok
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
10
|
Yu K, Zhang H, Biggs S, Xu Z, Cayre OJ, Harbottle D. The rheology of polyvinylpyrrolidone-coated silica nanoparticles positioned at an air-aqueous interface. J Colloid Interface Sci 2018; 527:346-355. [DOI: 10.1016/j.jcis.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|