1
|
Trombin de Souza M, Trombin de Souza M, Bernardi D, Oliveira DDC, Morais MC, de Melo DJ, Richardi VS, Zarbin PHG, Zawadneak MAC. Essential Oil of Rosmarinus officinalis Ecotypes and Their Major Compounds: Insecticidal and Histological Assessment Against Drosophila suzukii and Their Impact on a Nontarget Parasitoid. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:955-966. [PMID: 34865075 DOI: 10.1093/jee/toab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Essential oils (EOs) produced by plants in the Lamiaceae family may provide new insecticidal molecules. Novel control compounds are needed to control Drosophila suzukii (Matsumura), a severe economic invasive pest of thin-skinned fruit crops. Thus, we characterized the main compounds of EOs from three rosemary Rosmarinus officinalis ecotypes (ECOs) and evaluated their toxicity to D. suzukii adults, deterrence of oviposition behavior, and histological alterations in larvae. Additionally, we analyzed the lethal and sublethal effect on the pupal parasitoid Trichopria anastrephae. The main compounds identified in the R. officinalis ECOs were α-pinene, camphor and 1,8-cineole. In bioassays via topical application or ingestion, ECOs and their major compounds showed high toxicity on D. suzukii adults and a lower concentration could kill 50% and 90% of flies compared to spinetoram. The dry residues of a-pinene, 1,8-cineole, and camphor provided a repellent effect by reducing D. suzukii oviposition by ~47% compared to untreated fruit. Histological sections of 3rd instar larval D. suzukii posttreatment revealed damage to the fat body, Malpighian tubules, brain, salivary gland, and midgut, which contributed to high larval and pupal mortality. Survival and parasitism by adult T. anastrephae were not affected. Thus, R. officinalis EO and their compounds have potential for developing novel insecticides to manage D. suzukii.
Collapse
Affiliation(s)
| | | | - Daniel Bernardi
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Daiana da Costa Oliveira
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Maíra Chagas Morais
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
2
|
Tissue damage and cytotoxic effects of Tagetes minuta essential oil against Lucilia cuprina. Exp Parasitol 2019; 198:46-52. [PMID: 30721666 DOI: 10.1016/j.exppara.2019.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
The blowfly Lucilia cuprina has great medico-sanitary and veterinary importance due to the ability of its larval form to develop in decaying organic matter, parasitizing vertebrates. Fly eradication is challenging and the essential oil (EO) of Tagetes minuta (TMEO) have been reported to have therapeutic properties. This study aimed to determine the activity of EO from the aerial parts of T. minuta against third instar larvae (L3) of L. cuprina. Groups of 20 L3 were placed on filter paper, which were impregnated with varying concentrations (0.19; 0.39; 0.79; 1.59; 2.38; 3.18; 4.77; and 6.36 μL/cm2) of TMEO solubilized in acetone, ethanol or Tween 20. Histological tissue damage of TMEO was measured in L3 after 24, 48 and 96 h of exposure. Dihydrotagetone (67.64%), trans-ocimene (16.23%), trans-tagetone (10.14%) and verbenone (2.98%) were obtained as major compounds of TMEO. Lethal concentrations of 50%, 24 and 48 h after TMEO exposure were 1.02 and 0.73 μL/cm2 for acetone; 3.37 and 1.75 μL/cm2 for ethanol; and 7.46 and 6.11 μL/cm2 for Tween 20, respectively. TMEO had a significant L3 mortality of 96.6% in acetone, 48 h after contact. Cuticle abnormalities were observed, as well as the loss of digestive tract architecture and vacuolization in fat bodies. TMEO presented time and concentration-dependent effects against L. cuprina. As our study demonstrated a strong insecticide activity of TMEO, we consider that it could be developed into an ecofriendly product against L. cuprina.
Collapse
|
3
|
Chaaban A, Richardi VS, Carrer AR, Brum JS, Cipriano RR, Martins CEN, Silva MAN, Deschamps C, Molento MB. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:17-27. [PMID: 30744891 DOI: 10.1016/j.pestbp.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Lucilia cuprina, known as the Australian blowfly, is of high medico-sanitary and veterinary importance due to its ability to induce myiasis. Synthetic products are the most frequent form of fly control, but their indiscriminate use has selected for resistant populations and accounted for high levels of residues in animal products. This study aimed to assess the effect of essential oil from leaves of Curcuma longa (CLLEO), and its major compound α-phellandrene against L. cuprina L3. An additional goal was to determine the morphological alterations in target organs/tissues through ultrastructural assessment (SEM) and light microscopy, as well as macroscopic damage to cuticle induced by CLLEO. Groups of 20 L3 were placed on filter paper impregnated with increasing concentrations of CLLEO (0.15 to 2.86 μL/cm2) and α-phellandrene (0.29 to 1.47 μL/cm2). Efficacy was determined by quantifying L3 mortality 6, 24 and 48 h after contact with CLLEO and by measuring the structural damage to L3. CLLEO and α-phellandrene inhibited adult emergence by 96.22 and 100%, respectively. Macroscopic cuticle damage, appeared as diffuse pigment and darkening of larval body, was caused by both extracts. The SEM revealed dryness on the cuticle surface, distortion of the sensorial structures and general degeneration in treated L3. Furthermore, alterations in target organs (digestive tract, fat body and brain) were noticed and shall be used as biomarkers in future attempts to elucidate the mechanism of action of these compounds. The vacuolar degeneration and pyknotic profiles observed in the brain tissue of treated larvae with both extracts and the decreased motility within <6 h after treatment leads us to suggest a neurotoxic activity of the products. This work demonstrates the potential use of CLLEO and α-phellandrene as bioinsecticides to be used against L. cuprina, representing an ecofriendly alternative for myiasis control in humans and animals.
Collapse
Affiliation(s)
- Amanda Chaaban
- Laboratory of Parasitic Diseases, Federal University of Parana, Curitiba, Brazil; Department of Veterinary Medicine, Catarinense Federal Institute, Araquari, Brazil.
| | - Vinicius Sobrinho Richardi
- Laboratory of Morphology and Physiology of Culicidae and Chironomidae, Federal University of Parana, Curitiba, Brazil
| | | | - Juliana Sperotto Brum
- Laboratory of Veterinary Pathology, Department of Veterinary Sciences, Federal University of Parana, Curitiba, Brazil
| | - Roger Raupp Cipriano
- Laboratory of Phytotechnology and Crop Protection, Federal University of Paraná, Curitiba, Brazil
| | | | - Mário Antônio Navarro Silva
- Laboratory of Morphology and Physiology of Culicidae and Chironomidae, Federal University of Parana, Curitiba, Brazil
| | - Cicero Deschamps
- Laboratory of Phytotechnology and Crop Protection, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|