1
|
Hassan MSH, Ali A, Mahmoud ME, Altakrouni D, Najimudeen SM, Abdul-Careem MF. Protection of laying chickens against the Canadian DMV/1639 infectious bronchitis virus infection through priming with heterologous live vaccine and boosting with heterologous or homologous inactivated vaccine. Virus Res 2024; 339:199281. [PMID: 37995965 PMCID: PMC10751723 DOI: 10.1016/j.virusres.2023.199281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The emergence of the Canadian Delmarva (DMV)/1639 infectious bronchitis virus (IBV) type strains was associated with egg production disorders in Eastern Canadian layer operations. While developing vaccines for novel IBV variants is not typically a reasonable approach, the consideration of an autogenous vaccine becomes more appealing, particularly when the new variant presents significant economic challenges. The current study aimed to compare the efficacies of two vaccination programs that included heterologous live priming by Massachusetts (Mass) and Connecticut (Conn) type vaccines followed by either a commercial inactivated Mass type vaccine or a locally prepared autogenous inactivated DMV/1639 type vaccine against DMV/1639 IBV challenge. The protection parameters evaluated were egg production, viral shedding, dissemination of the virus in tissues, gross and microscopic lesions, and immunological responses. The challenge with the DMV/1639 caused severe consequences in the non-vaccinated laying hens including significant drop in egg production, production of low-quality eggs, serious damage to the reproductive organs, and yolk peritonitis. The two vaccination programs protected the layers from the poor egg-laying performance and the pathology. The vaccination program incorporating the autogenous inactivated DMV/1639 type vaccine was more effective in reducing vial loads in renal and reproductive tissues. This was associated with a higher virus neutralization titer compared to the group that received the commercial inactivated Mass type vaccine. Additionally, the autogenous vaccine boost led to a significant reduction in the viral shedding compared to the non-vaccinated laying hens. However, both vaccination programs induced significant level of protection considering all parameters examined. Overall, the findings from this study underscore the significance of IBV vaccination for protecting laying hens.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 84524, Egypt
| | - Danah Altakrouni
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
2
|
The efficacy of the prime-boost regimen for heterologous infectious bronchitis vaccines mandates the administration of homologous vaccines. Virusdisease 2022; 33:291-302. [PMID: 36059721 PMCID: PMC9421637 DOI: 10.1007/s13337-022-00780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/15/2022] [Indexed: 10/31/2022] Open
Abstract
Infectious bronchitis virus (IBV) has been frequently reported in chickens worldwide, including in the Eastern Region of Saudi Arabia (ERS). Several IBV outbreaks were recently reported in chickens despite the massive use of various vaccines. Based on partial sequencing of the S1 gene, at least three genotypes were reported (CK/CH/LDL/97I, IS/720/99, and IS/Variant2/98) in the ERS with no available homologous vaccines. Herein, we tried to evaluate the protection provided by some selected commercial-available vaccines against these three genotypes. We divided the experimental chickens into eight groups. Representative isolates from these genotypes were inoculated into three groups of broiler chickens vaccinated with the H-120 vaccine at the age of 1 day and boosted with the 4/91 vaccine at the age of 14 days (challenged groups). One group of chickens had received the same protocol of IBV vaccines but was kept without infection to serve as a vaccine control group. The three isolates were inoculated into three other similar but unvaccinated groups of broiler chickens (infected groups). Group eight chickens were neither vaccinated nor infected and used as a negative control group. Evaluation of the protection induced by the tested vaccination schedule was assessed by several criteria, including the ability to reduce the severe clinical signs caused by IBV infection, changes in the body temperature of various groups of chickens, the reduction in the magnitude of IBV-induced lesions, and the reduction in the viral loads in tracheas of a different group of chicken. Monitoring the immune status of chickens was also recorded based on the hemagglutination inhibition antibodies in sera of various groups of chickens. Our results show clinical and tracheal protection against IBV/IS/Variant2/98-like and IBV/IS/720/99-like strains. Moderate protection was observed in the IBV/CK/CH/LDL/97I-like pressure. The kidneys of the challenged groups of chickens showed minimal or no gross lesions compared with the infected groups, even in those chickens challenged with the IBV/CK/CH/LDL/97I-like strain. In conclusion, this is the first study to perform the protectotyping of some IBV strains from Saudi Arabia. It demonstrated the proficiency of the investigated vaccination schedule in control of infection of broiler chickens with IBV/IS/Variant2/98 and IBV/IS/720/99 strains. It is highly recommended to introduce the homologous IBV/CK/CH/LDL/97I-based vaccine to the vaccination protocols of chickens in the ERS to match the circulating strains and ensure better protection.
Collapse
|
3
|
Houta MH, Hassan KE, Legnardi M, Tucciarone CM, Abdel-Moneim AS, Cecchinato M, El-Sawah AA, Ali A, Franzo G. Phylodynamic and Recombination Analyses of Avian Infectious Bronchitis GI-23 Reveal a Widespread Recombinant Cluster and New Among-Countries Linkages. Animals (Basel) 2021; 11:ani11113182. [PMID: 34827914 PMCID: PMC8614413 DOI: 10.3390/ani11113182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Infectious bronchitis virus (IBV) is one of the main infectious agents affecting the avian industry. The remarkable evolutionary rate of this virus represents an often unsurmountable challenge to its control, leading to the emergence of different lineages featured by different biological properties and limited cross-protection. In the present study, the origin, spreading and evolution of GI-23, one of the most important IBV emerging lineages, has been reconstructed using a phylodynamic approach. To this purpose, the broadest available collection of complete and partial S1 sequences was downloaded from GenBank and merged with specifically sequenced European strains. After a likely ancient origin, GI-23 circulated undetected in the Middle East for a considerable time, thereafter emerging as a threat in parallel with the intensification of the poultry industry and its introduction in other countries. An intensive viral circulation affecting mainly neighbouring countries or those with strong economic and political relationships was demonstrated, even though some nations appear to play a major role as a “bridge” among less related locations. Of note, a big recombinant cluster, likely originating in the Middle East but spreading thereafter, especially to Europe through Turkey, demonstrated a much-marked increase in viral population size, and potentially fitness, compared to previously circulating variants. Abstract Infectious bronchitis virus GI-23 lineage, although described approximately two decades ago in the Middle East, has recently drawn remarkable attention and is considered an “emerging” lineage due to its current spread to several other regions, including Europe. Despite the relevance, no comprehensive studies are available investigating its epidemiologic and evolutionary pattern. The present phylodynamic study was designed to fill this gap, benefitting from a collection of freely available GI-23 sequences and ad-hoc generated European ones. After a relatively ancient origin in the Middle East, likely in the first half of the previous century, GI-23 circulated largely undetected or underdiagnosed for a long time in this region, likely causing little damage, potentially because of low virulence coupled with limited development of avian industry in the considered years and regions and insufficient diagnostic activity. The following development of the poultry industry and spread to other countries led to a progressive but slow increase of viral population size between the late ‘90s and 2010. An increase in viral virulence could also be hypothesized. Of note, a big recombinant cluster, likely originating in the Middle East but spreading thereafter, especially to Europe through Turkey, demonstrated a much-marked increase in viral population size compared to previously circulating variants. The extensive available GI-23 sequence datasets allowed to demonstrate several potential epidemiological links among African, Asian, and European countries, not described for other IBV lineages. However, differently from previously investigated IBV lineages, its spread appears to primarily involve neighbouring countries and those with strong economic and political relationships. It could thus be speculated that frequent effective contacts among locations are necessary for efficient strain transmission. Some countries appear to play a major role as a “bridge” among less related locations, being Turkey the most relevant example. The role of vaccination in controlling the viral population was also tentatively evaluated. However, despite some evidence suggesting such an effect, the bias in sequence and data availability and the variability in the applied vaccination protocols prevent robust conclusions and warrant further investigations.
Collapse
Affiliation(s)
- Mohamed H. Houta
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.H.H.); (K.E.H.); (A.A.E.-S.)
| | - Kareem E. Hassan
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.H.H.); (K.E.H.); (A.A.E.-S.)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.); (C.M.T.); (M.C.)
| | - Claudia M. Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.); (C.M.T.); (M.C.)
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Taif 21944, Saudi Arabia;
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.); (C.M.T.); (M.C.)
| | - Azza A. El-Sawah
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.H.H.); (K.E.H.); (A.A.E.-S.)
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.H.H.); (K.E.H.); (A.A.E.-S.)
- Correspondence: (A.A.); (G.F.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.); (C.M.T.); (M.C.)
- Correspondence: (A.A.); (G.F.)
| |
Collapse
|
4
|
Identification of Novel T-Cell Epitopes on Infectious Bronchitis Virus N Protein and Development of a Multi-epitope Vaccine. J Virol 2021; 95:e0066721. [PMID: 34105997 DOI: 10.1128/jvi.00667-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular immune responses play a key role in the control of viral infection. The nucleocapsid (N) protein of infectious bronchitis virus (IBV) is a major immunogenic protein that can induce protective immunity. To screen for potential T-cell epitopes on IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. Four T-cell epitope peptides were identified by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining, and carboxyfluorescein succinimidyl ester (CFSE) lymphocyte proliferation assays; among them, three peptides (N211-230, N271-290, and N381-400) were cytotoxic T lymphocyte (CTL) epitopes, and one peptide (N261-280) was a dual-specific T-cell epitope, which can be recognized by both CD8+ and CD4+ T cells. Multi-epitope gene transcription cassettes comprising four neutralizing epitope domains and four T-cell epitope peptides were synthesized and inserted into the genome of Newcastle disease virus strain La Sota between the P and M genes. Recombinant IBV multi-epitope vaccine candidate rLa Sota/SBNT was generated via reverse genetics, and its immune protection efficacy was evaluated in specific-pathogen-free chickens. Our results show that rLa Sota/SBNT induced IBV-specific neutralizing antibody and T-cell responses and provided significant protection against homologous and heterologous IBV challenge. Thus, the T-cell epitope peptides identified in this study could be good candidates for IBV vaccine development, and recombinant Newcastle disease virus-expressing IBV multi-epitope genes represent a safe and effective vaccine candidate for controlling infectious bronchitis. IMPORTANCE T-cell-mediated immune responses are critical for the elimination of IBV-infected cells. To screen conserved T-cell epitopes in the IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. By combining IFN-γ ELISpot, intracellular cytokine staining, and CFSE lymphocyte proliferation assays, we identified three CTL epitopes and one dual-specific T-cell epitope. The value of T-cell epitope peptides identified in the N protein was further verified by the design of an IBV multi-epitope vaccine. Results show that IBV multi-epitope vaccine candidate rLa Sota/SBNT provided cross protection against challenges with a QX-like or a TW-like IBV strain. So, T-cell-mediated immune responses play an important role in the control of viral infection, and conserved T-cell epitopes serve as promising candidates for use in multi-epitope vaccine construction. Our results provide a new perspective for the development of a safer and more effective IBV vaccine.
Collapse
|