1
|
Evangelista AG, Corrêa JAF, Pinto ACMS, Gonçalves FDR, Luciano FB. Recent advances in the use of bacterial probiotics in animal production. Anim Health Res Rev 2023; 24:41-53. [PMID: 38073081 DOI: 10.1017/s1466252323000063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Animal husbandry is increasingly under pressure to meet world food demand. Thus, strategies are sought to ensure this productivity increment. The objective of this review was to gather advances in the use of bacterial probiotics in animal production. Lactobacilli correspond to the most used bacterial group, with several beneficial effects already reported and described, as well as the Enterococcus and Pediococcus genera - being the latter expressively used in aquaculture. Research on the Bifidobacterium genus is mostly focused on human health, which demonstrates great effects on blood biochemical parameters. Such results sustain the possibility of expanding its use in veterinary medicine. Other groups commonly assessed for human medicine but with prospective expansion to animal health are the genera Leuconostoc and Streptococcus, which have been demonstrating interesting effects on the prevention of viral diseases, and in dentistry, respectively. Although bacteria from the genera Bacillus and Lactococcus also have great potential for use in animal production, a complete characterization of the candidate strain must be previously made, due to the existence of pathogenic and/or spoilage variants. It is noteworthy that a growing number of studies have investigated the genus Propionibacterium, but still in very early stages. However, the hitherto excellent results endorse its application. In this way, in addition to the fact that bacterial probiotics represent a promising approach to promote productivity increase in animal production, the application of other strains than the traditionally employed genera may allow the exploitation of novel mechanisms and enlighten unexplored possibilities.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Anne Caroline Marques Schoch Pinto
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Francieli Dalvana Ribeiro Gonçalves
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Prado Velho, Curitiba, PR 80215-901, Brazil
| |
Collapse
|
2
|
Abo Ghanima MM, Abd El-Hack ME, Al-Otaibi AM, Nasr S, Almohmadi NH, Taha AE, Jaremko M, El-Kasrawy NI. Growth performance, liver and kidney functions, blood hormonal profile, and economic efficiency of broilers fed different levels of threonine supplementation during feed restriction. Poult Sci 2023; 102:102796. [PMID: 37321031 PMCID: PMC10404736 DOI: 10.1016/j.psj.2023.102796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The objective of the existing investigation was to determine the effect of dietary inclusion of threonine amino acid at different levels during feed restriction on growth indices, liver and kidney function parameters, and some hormonal profiles along with economic indicators in broiler chickens. A total of 1,600 from 2 different breeds (800 Ross 308 and 800 Indian River) at 21-day-old age were incorporated. Chicks were randomly assigned into 2 main groups, control and feed-restricted (8 h/d), during the fourth week of age. Each main group was subdivided into 4 groups. The first group was fed a basal diet without adding extra threonine (100%), the second, third, and fourth groups were fed a basal diet with extra threonine levels of 110, 120, and 130%, respectively. Each subgroup consisted of 10 replicates of 10 birds. We noticed that the dietary inclusion of threonine at extra levels in the basal diets significantly enhanced final body weight, body weight gain, and better feed conversion ratio. This was mainly due to the enhanced levels of growth hormone (GH), insulin-like growth factor (IGF1), triiodothyronine (T3), and thyroxine (T4). Moreover, the lowest feed cost per kilogram body weight gain and improved return parameters were reported in control and feed-restricted birds fed higher levels of threonine than other groups. Also, a significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and urea levels was observed in feed-restricted birds supplemented with 120 and 130% levels of threonine. Hence, we recommend supplementing threonine at levels of 120 and 130% in the diet of broilers to promote growth and profitability.
Collapse
Affiliation(s)
- Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13225, Saudi Arabia
| | - Samia Nasr
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nagwa I El-Kasrawy
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
3
|
Quintana-Ospina GA, Alfaro-Wisaquillo MC, Oviedo-Rondon EO, Ruiz-Ramirez JR, Bernal-Arango LC, Martinez-Bernal GD. Data Analytics of Broiler Growth Dynamics and Feed Conversion Ratio of Broilers Raised to 35 d under Commercial Tropical Conditions. Animals (Basel) 2023; 13:2447. [PMID: 37570256 PMCID: PMC10416863 DOI: 10.3390/ani13152447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Data collection is standard in commercial broiler production; however, growth modeling is still a challenge since this data often lacks an inflection point. This study evaluated body weight (BW) dynamics, feed intake, BW gain, feed conversion ratio (FCR), and mortality of broiler flocks reared under commercial tropical conditions with controlled feeding to optimize FCR. The data analyzed included performance records of 1347 male and 1353 female Ross 308 AP broiler flocks with a total of 95.4 million chickens housed from 2018 to 2020. Decision trees determined high- and low-feed-efficiency groups using FCR at 35 d. Logistic, Gompertz-Laird, and von Bertalanffy growth models were fitted with weekly BW data for each flock within performance groups. The logistic model indicated more accurate estimates with biological meaning. The high-efficiency males and females (p < 0.001) were offered less feed than the low-efficiency group and were consistently more efficient. In conclusion, greater feeding control between the second and the fourth week of age, followed by higher feed allowance during the last week, was associated with better feed efficiency at 35 d in males and females. Additionally, models demonstrated that a reduced growth rate resulted in heavier chickens at 35 d with better feed efficiency and greater BW gain.
Collapse
Affiliation(s)
- Gustavo A. Quintana-Ospina
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Maria C. Alfaro-Wisaquillo
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Edgar O. Oviedo-Rondon
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Juan R. Ruiz-Ramirez
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Luis C. Bernal-Arango
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | | |
Collapse
|
4
|
Effect of L-serine on circadian variation of cloacal and body surface temperatures in broiler chickens subjected to feed restriction during the hot-dry season. J Therm Biol 2023; 112:103445. [PMID: 36796900 DOI: 10.1016/j.jtherbio.2022.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The study aimed to evaluate the effects of L-serine on circadian variation of body temperatures in feed-restricted broiler chickens during the hot-dry season. Day-old broiler chicks of both sexes served as subjects; comprising four groups of 30 chicks each: Group A: water ad libitum + 20% feed restriction (FR); Group B: feed and water ad libitum (AL); Group C: water ad libitum + 20% feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group D feed and water ad libitum + L-serine (200 mg/kg) (AL + L-serine). Feed restriction was performed on days 7-14 and L-serine was administered on days 1-14. Cloacal and body surface temperatures, recorded by digital clinical and infra-red thermometers, respectively, and temperature-humidity index were obtained over 26 h on days 21, 28 and 35. Temperature-humidity index (28.07-34.03) indicated broiler chickens were subjected to heat stress. L-serine decreased (P < 0.05) cloacal temperature in FR + L-serine (40.86 ± 0.07 °C), compared to FR (41.26 ± 0.05 °C) and AL (41.42 ± 0.08 °C) broiler chickens. Peak cloacal temperature occurred at 15:00 h in FR (41.74 ± 0.21 °C), FR + L-serine (41.30 ± 0.41 °C) and AL (41.87 ± 0.16 °C) broiler chickens. Fluctuations in thermal environmental parameters influenced circadian rhythmicity of cloacal temperature; especially the body surface temperatures, positively correlated with CT, and wing temperature recorded the closest mesor. In conclusion, L-serine and feed restriction decreased cloacal and body surface temperatures in broiler chickens during the hot-dry season.
Collapse
|
5
|
Expression patterns of AMPK and genes associated with lipid metabolism in newly hatched chicks during the metabolic perturbation of fasting and refeeding. Poult Sci 2022; 101:102231. [PMID: 36334428 PMCID: PMC9630794 DOI: 10.1016/j.psj.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Fasting–refeeding perturbation has been extensively used to reveal specific genes and metabolic pathways that control energy metabolism in chickens. In this study, 200 chickens were randomly assigned to 2 groups after hatching: the control group (C, fed ad libitum) and the fasting–refeeding group (T, water ad libitum). The chicks in Group T were fasted for 72 h, and then fed for another 48 h. Liver, hypothalamus, and adipose samples were collected at 0 (F0), 24 (F24), 48 (F48), and 72 h (F72) after fasting and 4 (FR4), 12 (FR12), 24 (FR24), and 48 h (FR48) after refeeding, respectively. Results showed that Group T had a significantly higher number of liver vacuoles (P < 0.05 or P < 0.01) and a significantly lower gray value of Sudan IIIstained sections (P < 0.05 or P < 0.01) than Group C at F48–FR48. In addition, compared with the Group C, fasting and refeeding reduced the expression of stearoyl CoA desaturase (SCD) mRNA (P < 0.05 or P < 0.01) in the liver and adipose tissues, the expression of glucocorticoid receptor (GR) mRNA (P < 0.05 or P < 0.01) in the liver, adipose, and hypothalamus tissues, and the expression of fatty acid synthase (FAS) mRNA (P < 0.05 or P < 0.01) in the liver at F24–FR24. Moreover, relative to those in Group C, fasting and refeeding increased the mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK) α, AMPKβ, and AMPKγ in the hypothalamus (P < 0.05 or P < 0.01) at F24–FR24. In conclusion, fasting and refeeding increased the fat content of the liver, and the expression of lipolytic genes in the hypothalamus (e.g., AMPKα, AMPKβ, and AMPKγ) but decreased the expression of fat synthesis genes in the liver (e.g., SCD, GR, and FAS), adipose (SCD and GR), and hypothalamus (GR).
Collapse
|
6
|
Ye J, Jiang S, Cheng Z, Ding F, Fan Q, Lin X, Wang Y, Gou Z. Feed Restriction Improves Lipid Metabolism by Changing the Structure of the Cecal Microbial Community and Enhances the Meat Quality and Flavor of Bearded Chickens. Animals (Basel) 2022; 12:ani12080970. [PMID: 35454217 PMCID: PMC9029254 DOI: 10.3390/ani12080970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive fat deposition in full-fed Bearded chickens does not only reduce carcass yield but also causes consumer rejection of meat. Feed restriction (FR) is an effective method to save on feed cost, reduce carcass fat deposition, and improve meat quality. A total of 560 150-d Bearded chickens were randomly divided into seven groups (each with eight replicates of ten birds) for 40 days. The control group was fed with the basal diet ad libitum (CON), and the other six groups were fed with 90% of the feed intake (90% FI), 80% FI, 70% FI, 90% metabolizable energy (90% ME), 80% ME, and 70% ME of the CON, respectively. Compared to the CON group, FR increased meat yield, but the total weight of the Bearded chickens was slighter; 80% FI and 70% ME improved the relative lipid metabolism indices of chickens, especially the levels of triglycerides and total cholesterol in the plasma and liver (p < 0.05), and decreased calpastatin activity in the breast muscle (p < 0.05). Additionally, 16S rRNA sequencing of cecal microbial community indicated that an increase in the abundance of Hydrogenoanaerobacterium and Bacteroides plebeius was observed in the 80% FI group (p < 0.05), and an enrichment in Olsenella, Catabacter, and Lachnospiraceae were observed in the 70% ME group (p < 0.05) compared to the CON group. Moreover, compared to the CON group, the L * value of the breast muscle significantly decreased, and a * value significantly increased in the 80% FI group (p < 0.05). Notably, the concentrations of threonine, lysine, aspartic acid, glutamic acid, proline, and arginine and the activity of calpain in breast muscle increased in the 80% FI group more than in the CON group (p < 0.05), while valine, isoleucine, leucine, phenylalanine, lysine, alanine, tyrosine and proline decreased in ME restriction groups (p < 0.05). Taken together, our results indicated that 80% FI could improve lipid metabolism by changing the structure of the cecal microbial community, and the meat quality and flavor of the Bearded chickens in 80% FI group was improved with a promoted meat color score, flavor substances, and the calproteinase system.
Collapse
Affiliation(s)
- Jinling Ye
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8757-6512
| | - Zhonggang Cheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Fayuan Ding
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (Z.C.); (F.D.); (Q.F.); (X.L.); (Y.W.); (Z.G.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|