1
|
Liu P, Xu X, Wang Y, Long X, Li X, Peng H. Effects of sodium thiosulfate on serum calcification factors in patients undergoing maintenance hemodialysis. Ther Apher Dial 2023; 27:1079-1087. [PMID: 37424269 DOI: 10.1111/1744-9987.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE To investigate the effect of sodium thiosulfate (STS) on serum calcification factors in patients undergoing maintenance hemodialysis. METHODS Forty-four Patients were randomly divided into control group (n = 22) and observation group (n = 22) by envelope method (block 4 randomization). The control group received routine treatment while observation group was treated with STS on the basis of routine treatment. The biochemical indicators, including BUN, UA, SCr, Ca2+ , P3- , calcium-phosphorus product, PTH, hs-CRP, TG, TC, HDL, LDL, and serum calcification factor MGP, FA, FGF-23, and OPG levels were compared before and after treatment. RESULTS Control group had no statistically significant difference in the levels of vascular calcification factors MGP, FA, FGF-23, and OPG before and after treatment (p > 0.05). Whereas observation group had higher levels of MGP and FA, and lower levels of FGF-23 and OPG after treatment than before treatment (p < 0.05). The levels of MGP and FA in observation group were higher than those in control group, and FGF-23 and OPG were lower than those in control group (p < 0.05). CONCLUSION It is speculated that sodium thiosulfate can alleviate the progression of vascular calcification by changing the levels of calcification factors.
Collapse
Affiliation(s)
- Pan Liu
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiang Xu
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - YuFu Wang
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - XiaoNa Long
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - XunJia Li
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| | - HongYing Peng
- Department of Nephrology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
2
|
Huang C, Duan Z, Xu C, Chen Y. Influence of sodium thiosulfate on coronary artery calcification of patients on dialysis: a meta-analysis. Ren Fail 2023; 45:2254569. [PMID: 37755153 PMCID: PMC10538455 DOI: 10.1080/0886022x.2023.2254569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronary artery calcification (CAC) is common in dialysis patients and is associated with a higher risk of future cardiovascular events. Sodium thiosulfate (STS) is effective for calciphylaxis in dialysis patients; however, the influence of STS on CAC in dialysis patients remains unclear. This systematic review and meta-analysis were conducted to evaluate the effects of STS on CAC in patients undergoing dialysis. PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched from inception to 22 March 2023 for controlled studies comparing the influence of STS versus usual care without STS on CAC scores in dialysis patients. A random effects model incorporating the potential influence of heterogeneity was used to pool the results. Nine studies, including two non-randomized studies and seven randomized controlled trials, were included in the meta-analysis. Among these, 365 patients on dialysis were included in the study. Compared with usual care without STS, intravenous STS for 3-6 months was associated with significantly reduced CAC scores (mean difference [MD] = -180.17, 95% confidence interval [CI]: -276.64 to -83.70, p < 0.001, I2 = 0%). Sensitivity analysis limited to studies of patients on hemodialysis showed similar results (MD: -167.33, 95% CI: -266.57 to -68.09, p = 0.001; I2 = 0%). Subgroup analyses according to study design, sample size, mean age, sex, dialysis vintage of the patients, and treatment duration of STS also showed consistent results (p for subgroup differences all > 0.05). In conclusion, intravenous STS may be effective in attenuating CAC in dialysis patients.
Collapse
Affiliation(s)
- Chong Huang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhibing Duan
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengyun Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Chen
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|
4
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
Li M, Zhu Y, Jaiswal SK, Liu NF. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif Tissue Int 2021; 109:113-120. [PMID: 33660037 DOI: 10.1007/s00223-021-00828-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
Vascular calcification occurs highly prevalent, which commonly predicts adverse cardiovascular events. The pathogenesis of calcification, a complicated and multifactorial process, is incompletely characterized. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the vascular smooth muscle cells (VSMCs) calcification. This review summarizes the role of mitochondrial dysfunction and metabolic reprogramming in vascular calcification, and indicates that metabolic regulation may be a therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Zhu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Sandip Kumar Jaiswal
- Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Mohan D, Balasubramanian ED, Ravindran S, Kurian GA. Renal mitochondria can withstand hypoxic/ischemic injury secondary to renal failure in uremic rats pretreated with sodium thiosulfate. Indian J Pharmacol 2018; 49:317-321. [PMID: 29326493 PMCID: PMC5754940 DOI: 10.4103/ijp.ijp_751_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Sodium thiosulfate (STS) is a potent drug used to treat calcific uremic arteriopathy in dialysis patients and its mode of action is envisaged by calcium chelation and antioxidant potential. STS's action on mitochondrial dysfunction, one of the major players in the pathology of vascular calcification is yet to be explored. METHODS: Adenine (0.75%, 28 days)-treated vascular calcified rat kidney was used to isolate mitochondria, where the animal was administered with or without STS for 28 days. Isolated mitochondria were subjected to physiological oxidative stress by nitrogen gas purging (hypoxia/ischemia-reperfusion injury) to assess mitochondrial recovery extent due to STS treatment in vascular calcified rat kidney. RESULTS: The results confirmed an elevated oxidative stress and deteriorated mitochondrial enzyme activities in all groups except the drug-treated group. CONCLUSION: The STS treatment, besides rendering renal protection against adenine-induced renal failure, also helped to maintain mitochondrial functional integrity in a later insult due to hypoxia/ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dhivya Mohan
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sriram Ravindran
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Laboratory, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Ravindran S, Ramachandran K, Kurian GA. Sodium thiosulfate mediated cardioprotection against myocardial ischemia-reperfusion injury is defunct in rat heart with co-morbidity of vascular calcification. Biochimie 2018; 147:80-88. [PMID: 29366934 DOI: 10.1016/j.biochi.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Sodium thiosulfate (STS) has shown promising effects in amelioration of myocardial ischemia-reperfusion injury (IR) in a rat model and is clinically useful in the treatment of chronic kidney disease (CKD) associated calciphylaxis. As the prevalence of cardiac complications is higher in CKD, we tested the effectiveness of STS in a rat model of adenine-induced vascular calcification and subjected the heart to IR. We observed an increased infarct size (29%) by TTC staining, lactate dehydrogenase (54%) and creatine kinase (32%) release in the coronary perfusate and altered hemodynamics compared to a normal rat treated with STS and subjected to IR. As functional mitochondria are essential for preserving heart from the detrimental effects of IR, we found that calcification induced mitochondrial dysfunction (reduced RCR->80%, P/O ratio->30%, ΔΨ->10% and swelling- 27%), could not be restored efficiently by STS treatment. Therefore we used nicorandil (mitochondrial potassium channel opener) along with STS as a combination therapy to treat the diseased heart and found an improvement in cardioprotection against IR injury, compared to STS alone. Upon evaluating these hearts, we found that both the cardiac mitochondria namely interfibrillar and subsarcolemmal were functionally well preserved.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Lab, SASTRA Deemed University, Thanjavur, 613401, India
| | | | - Gino A Kurian
- Vascular Biology Lab, SASTRA Deemed University, Thanjavur, 613401, India.
| |
Collapse
|