1
|
Chen X, Zhang S, Wu X, Lei Y, Lei B, Zhao Z. Inflammatory cytokines and oral lichen planus: a Mendelian randomization study. Front Immunol 2024; 15:1332317. [PMID: 38390325 PMCID: PMC10883046 DOI: 10.3389/fimmu.2024.1332317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Inflammatory cytokines have long been considered closely related to the development of oral lichen planus (OLP), and we further explored the causal relationship between the two by Mendelian randomization (MR) method. Methods We performed bidirectional MR analyses by large genome-wide association studies (GWAS). The data included a large-scale OLP dataset, as well as datasets of 41 inflammatory cytokines. All data were obtained from the University of Bristol database, which includes 41 inflammatory cytokines, and the GWAS Catalog database, which includes 91 inflammatory cytokines. OLP data were obtained from the Finngen database, which includes 6411 cases and 405770 healthy controls. We used the inverse variance weighted (IVW) method, MR-Egger method, weighted median method, simple mode method and weighted mode method to analyze the causal relationship between inflammatory cytokines and OLP, and we also combined with sensitivity analysis to further verify the robustness of the results. We performed a meta-analysis of positive or potentially positive results for the same genes to confirm the reliability of the final results. Results We primarily used the IVW analysis method, corrected using the Benjamin Hochberg (BH) method. When p<0.00038 (0.05/132), the results are significantly causal; when 0.00038 Conclusion There is a causal association between OLP and some inflammatory cytokines, which may play an important role in the pathogenesis of OLP and require further attention.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China
| | - Simin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of General Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiao Wu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxi Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Emergency Room, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bing Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of General Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhibai Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of General Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Ferreira A, Nascimento D, Cruz CD. Molecular Mechanism Operating in Animal Models of Neurogenic Detrusor Overactivity: A Systematic Review Focusing on Bladder Dysfunction of Neurogenic Origin. Int J Mol Sci 2023; 24:ijms24043273. [PMID: 36834694 PMCID: PMC9959149 DOI: 10.3390/ijms24043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.
Collapse
Affiliation(s)
- Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | - Diogo Nascimento
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426740; Fax: +351-225513655
| |
Collapse
|
4
|
Sabaie H, Khorami Rouz S, Kouchakali G, Heydarzadeh S, Asadi MR, Sharifi-Bonab M, Hussen BM, Taheri M, Ayatollahi SA, Rezazadeh M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front Genet 2022; 13:1011350. [PMID: 36324503 PMCID: PMC9619104 DOI: 10.3389/fgene.2022.1011350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Slow-burning inflammation at the lesion rim is connected to the expansion of chronic multiple sclerosis (MS) lesions. However, the underlying processes causing expansion are not clearly realized. In this context, the current study used a bioinformatics approach to identify the expression profiles and related lncRNA-associated ceRNA regulatory axes in the periplaque region in MS patients. Expression data (GSE52139) from periplaque regions in the secondary progressive MS spinal cord and controls were downloaded from the Gene Expression Omnibus database (GEO), which has details on mRNAs and lncRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also found using the DIANA-LncBase, miRTarBase, and HMDD databases. The Pearson correlation coefficient was used to determine whether there were any positive correlations between DEmRNAs and DElncRNAs in the ceRNA network. Finally, lncRNA-associated ceRNA axes were created based on co-expression and connections between DElncRNA, miRNA, and DEmRNA. We used the Enrichr tool to enrich the biological process, molecular function, and pathways for DEmRNAs and DElncRNAs. A network of DEmRNAs' protein-protein interactions was developed, and the top five hub genes were found using Cytoscape and STRING. The current study indicates that 15 DEmRNAs, including FOS, GJA1, NTRK2, CTNND1, and SP3, are connected to the MS ceRNA network. Additionally, four DElncRNAs (such as TUG1, ASB16-AS1, and LINC01094) that regulated the aforementioned mRNAs by sponging 14 MS-related miRNAs (e.g., hsa-miR-145-5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) were found. In addition, the analysis of pathway enrichment revealed that DEmRNAs were enriched in the pathways for the "MAPK signaling pathway", "Kaposi sarcoma-associated herpesvirus infection", "Human immunodeficiency virus one infection", "Lipid and atherosclerosis", and "Amphetamine addiction". Even though the function of these ceRNA axes needs to be investigated further, this study provides research targets for studying ceRNA-mediated molecular mechanisms related to periplaque demyelination in MS.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Characterization of Neurochemical Signature Alterations in the Enteric Nervous System in Autoimmune Encephalomyelitis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To date, it has remained unclear whether gastrointestinal symptoms, which are frequently observed in patients with multiple sclerosis (MS), are accompanied by pathology of the enteric nervous system (ENS). Here, the neurotransmitter signature of ENS neurons and morphological alterations of interstitial cells of Cajal (ICCs) were studied in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE), which is an animal model of MS. Immunohistochemical analysis was performed on colonic whole mounts from mice with EAE and on paraffin-embedded sections of intestinal tissue from patients with MS. Antibodies against neurotransmitters or their enzymes (including vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS), and choline acetyltransferase (ChAT)) were used in conjunction with pan-neuronal markers. In addition, the presence of anoctamin 1 (ANO1)-expressing ICCs was studied. ENS changes were observed in the myenteric plexus, but they were absent in the submucosal plexus of both EAE mice and patients with MS. There was a significant decrease in the percentage of ChAT-positive neurons in EAE mice as opposed to a trend toward an increase in patients with MS. Moreover, while ANO1 expression was decreased in EAE mice, patients with MS displayed a significant increase. Although additional studies are necessary to accomplish an in-depth characterization of ENS alterations in MS, our results imply that such alterations exist and may reveal novel insights into the pathophysiology of MS.
Collapse
|
6
|
Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, Pashazadeh F, Mahmoudi J, Maasoumi N, Sadigh-Eteghad S. Stem Cell Therapy for Neurogenic Bladder Dysfunction in Rodent Models: A Systematic Review. Int Neurourol J 2020; 24:241-257. [PMID: 33017895 PMCID: PMC7538284 DOI: 10.5213/inj.2040058.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neurogenic bladder dysfunction (NGB) has an impact on the quality of life, which made it an important research subject in preclinical studies. The present review investigates the effect of stem cell (SC) therapy on bladder functional recovery after the onset of spinal cord injury (SCI), multiple sclerosis (MS), Parkinson disease (PD), and stroke in rodent models. METHODS All experiments evaluated the regenerative potential of SC on the management of NGB in rodent models up to June 2019, were included. From 1,189 relevant publications, 20 studies met our inclusion criteria of which 15 were conducted on SCI, 2 on PD, 2 on stroke, and 1 on MS in the rodent models. We conducted a meta-analysis on SCI experiments and for other neurological diseases, detailed urodynamic findings were reported. RESULTS The common SC sources used for therapeutical purposes were neural progenitor cells, bone marrow mesenchymal SCs, human amniotic fluid SCs, and human umbilical cord blood SCs. There was a significant improvement of micturition pressure in both contusion and transaction SCI models 4 and 8 weeks post-SC transplantation. Residual urine volume, micturition volume, and bladder capacity were improved 28 days after SC transplantation only in the transaction model of SCI. Nonvoiding contraction recovered only in 56 days post-cell transplantation in the contusion model. CONCLUSION Partial bladder recovery has been evident after SC therapy in SCI models. Due to limitations in the number of studies in other neurological diseases, additional studies are necessary to confirm the detailed mechanism for bladder recovery.
Collapse
Affiliation(s)
- Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narjes Maasoumi
- University Hospital Southampton, Southampton, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- East-Azerbaijan Comprehensive Stroke Program, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, Faculty of Persian Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ma Y, Chen Y, Zheng Y, Wen Y, Li Y, Feng J, He Y, Wen J. SCF/c-kit signaling pathway participates in ICC damage in neurogenic bladder. Cell Cycle 2020; 19:2074-2080. [PMID: 32658594 DOI: 10.1080/15384101.2020.1793059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Neurogenic bladder (NB) is a type of double renal dysfunction caused by nerve lesions. The interstitial cells of Cajal (ICC) damage are involved in bladder dysfunction. The aim of this study is to investigate the effect of stem cell factor (SCF)/c-kit signaling pathway on ICC damage in NB model rats. Maximum cystometric capacity (MCC), bladder leak point pressures (BLPP), and bladder compliance (BC) were measured in sham-operated and NB model rats. Immunofluorescent staining for c-kit was performed to determine ICC count in rat bladder trigone. The morphology and ultrastructure changes of ICCs were observed under an electron microscope. The mRNA levels of c-kit and SCF in bladder tissues were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein levels of c-kit, SCF, p-JAK, p-STAT1, and p-STAT3 in bladder tissues were determined by western blot. ICC proliferation was detected by CCK-8 assay. NB resulted in changes in ultrastructure changes of ICCs and a decrease in the number of ICCs and in expression of c-kit, SCF, p-JAK, p-STAT1, and p-STAT3 in NB tissues. Inhibition of SCF/c-kit signaling pathway suppressed ICC proliferation by inhibiting JAK/STAT3 pathway. Moreover, inhibition of SCF/c-kit signaling pathway impaired the SCF-induced attenuation of ICC damage in NB model rats. Collectively, our data indicate that SCF/c-kit signaling pathway participates in ICC damage in NB.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Clinical Medicine, Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Yan Chen
- Institute of Clinical Medicine, Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Yan Zheng
- Immunization Key Lab of Kidney Disease of Henan Province, People's Hospital of Henan Province, Zhengzhou University , Zhengzhou, China
| | - Yibo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Yulin He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Jianguo Wen
- Institute of Clinical Medicine, Urodynamic Center and Department of Urology, Institute of Clinical Medicine, Pediatric Urodynamic Center and Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
8
|
Sakakibara R. Neurogenic lower urinary tract dysfunction in multiple sclerosis, neuromyelitis optica, and related disorders. Clin Auton Res 2018; 29:313-320. [DOI: 10.1007/s10286-018-0551-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023]
|
9
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|