1
|
Karaboğa İ, Okuyan HM, Doğan S, Ayçiçek ŞÖ, Çakıroğlu H. Ebselen Alleviates Sepsis-Induced Acute Kidney Injury by Regulating Endoplasmic Reticulum Stress, Apoptosis, and Oxidative Stress. Vet Med Sci 2025; 11:e70318. [PMID: 40116632 PMCID: PMC11927017 DOI: 10.1002/vms3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
Acute kidney injury (AKI) is one of the most serious complications of sepsis, with substantial morbidity and mortality, and no effective treatment exists. Ebselen is of pharmacological significance in the treatment and prevention of a variety of human diseases, such as cancer and cardiovascular disorders. Nevertheless, the role of Ebselen in the pathogenesis of sepsis-induced AKI remains unknown. Therefore, we aimed to elucidate the impact of Ebselen, an active seleno-organic compound, on AKI induced by lipopolysaccharide (LPS) and the associated molecular mechanisms, including endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress. We established the sepsis-induced AKI rat model by injecting 5 mg/kg of LPS intraperitoneally. The rats were given Ebselen (5 and 10 mg/kg, orally) before receiving the LPS injection. Ebselen treatment alleviated renal tubular injury and reduced the levels of blood urea nitrogen (BUN) and creatinine (CREA) in LPS-induced sepsis model. Immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) analyses revealed that Ebselen reduced caspase-3 expressions and apoptotic cells triggered by LPS in kidney tissues. LPS-induced sepsis caused ER stress, and Ebselen treatment alleviated the ER stress by regulating eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) and GRP78 in kidney tissue, as well as activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) in serum. Ebselen decreased malondialdehyde (MDA) levels induced by LPS. Ebselen alleviated LPS-induced oxidative stress by modulating MDA and superoxide dismutase (SOD) levels in kidney tissues and SOD, glutathione peroxidase (GPx) and serum total antioxidant status (TAS) levels in serum. In conclusion, we report for the time that Ebselen might alleviate sepsis-induced AKI through the regulation of ER stress apoptosis and oxidative stress.
Collapse
Affiliation(s)
- İhsan Karaboğa
- Department of Histology and Embryology, Faculty of MedicineKırklareli UniversityKırklareliTürkiye
| | - Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Serdar Doğan
- Department of Biochemistry, Faculty of MedicineHatay Mustafa Kemal UniversityHatayTürkiye
| | - Şeyda Öznur Ayçiçek
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Hüseyin Çakıroğlu
- Experimental Medicine Application and Research CenterSakarya UniversitySakaryaTürkiye
| |
Collapse
|
2
|
Kaya S, Yalçın T. Linalool may have a therapeutic effect on cadmium-induced nephrotoxicity by regulating NF-κB/TNF and GRP78/CHOP signaling pathways. J Trace Elem Med Biol 2024; 86:127510. [PMID: 39216431 DOI: 10.1016/j.jtemb.2024.127510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) is an environmental pollutant heavy metal with nephrotoxic effect. One of the primary constituents of essential oils is Linalool (Lin), a monoterpene having a variety of pharmacological properties including antimicrobial, anti-inflammatory, and antioxidant effects. The purpose of this study was to ascertain how Lin affected endoplasmic reticulum stress (ERS) and pro-inflammatory mediators in Cd-induced nephrotoxicity. In the experiment, 28 male rats were randomly divided into four equal groups as control (no application), Cd (Cd at a dose of 3 mg/kg for the first 7 days), Cd+Lin (Cd at a dose of 3 mg/kg for the first 7 days and 100 mg/kg/day Lin) and Lin (100 mg/kg/day Lin) (n=7). The experiment was completed on the 15th day after all treatments were performed. Blood serum and kidney tissue samples were used for analyses. Cd-induced histopathological changes, inflammation, oxidative stress, and apoptosis were determined to increase in kidney tissue. However, it was observed that Cd-induced adverse effects in kidney tissue were mainly eliminated by Lin treatment. In conclusion, Lin demonstrated anti-inflammatory, anti-oxidant and anti-apoptotic effects in Cd-induced nephrotoxicity. Therefore, we believe that Lin may represent a high potential therapeutic strategy against renal tissue damage.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| | - Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| |
Collapse
|
3
|
Chen Y, Wei W, Fu J, Zhang T, Zhao J, Ma T. Forsythiaside A ameliorates sepsis-induced acute kidney injury via anti-inflammation and antiapoptotic effects by regulating endoplasmic reticulum stress. BMC Complement Med Ther 2023; 23:35. [PMID: 36737765 PMCID: PMC9896724 DOI: 10.1186/s12906-023-03855-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis is a systemic inflammatory response syndrome caused by an infection in the body, and accompanying acute kidney injury (AKI) is a common complication of sepsis. It is associated with increased mortality and morbidity. Forsythia Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a commonly used traditional Chinese medicine. AIMS OF THE STUDY This study aimed to elucidate the protective effect of Forsythiaside A (FTA) on sepsis-induced AKI by downregulating inflammatory and apoptotic responses, and exploring its underlying mechanism. METHODS Septic AKI was induced through intraperitoneal injection of LPS (10 mg/kg) using male C57BL/6 mice and pretreated with FTA or control saline. First, we assessed the degree of renal injury by creatinine, blood urea nitrogen measurement, and HE staining of renal tissue; secondly, the inflammation and apoptosis were measured byELISA, qPCR, and TUNEL immunofluorescence; finally, the mechanism was explored by computer molecular docking and Western blot. RESULTS Our data showed that FTA markedly attenuated pathological kidney injuries, alleviated the elevation of serum BUN and Creatinine, suggesting the renal protective effect of FTA. Notably, FTA significantly inhibited the renal expression of proinflammatory cytokine IL-1β, IL-6, and TNF-α both at protein and mRNA levels and attenuated cell apoptosis in the kidney, as measured by caspase-3 immunoblot and TUNEL assay, indicating its anti-Inflammation and antiapoptotic properties. Mechanistically, administration of LPS resulted in robust endoplasmic reticulum (ER) stress responses in the kidney, evidenced by glucose-regulated protein 78(GRP78) upregulation, protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation, eukaryotic initiation factor 2 alpha (elF2α) phosphorylation and C/EBP homologous protein (CHOP) overexpression, which could be significantly blocked by FTA pretreatment. Dynamic simulation and molecular docking were performed to provide further insight. CONCLUSIONS Collectively, our data suggest that FTA ameliorates sepsis-induced acute kidney injury via its anti-inflammation and antiapoptotic properties by regulating PERK signaling dependent ER stress responses.
Collapse
Affiliation(s)
- Yi Chen
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 People’s Republic of China
| | - Jingnan Fu
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Teng Zhang
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Jie Zhao
- grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Department of Respiratory and Intensive Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Tao Ma
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| |
Collapse
|
4
|
Yan Y, Zhu N, Jin D, Lin F, Lv Y. Remifentanil attenuates endoplasmic reticulum stress and inflammatory injury in LPS-induced damage in HK-2 cells. Ren Fail 2022; 44:1769-1779. [PMID: 36263441 PMCID: PMC9586623 DOI: 10.1080/0886022x.2022.2134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Renal injury is a fatal complication in critically ill patients with sepsis. As an ultrashort-acting synthetic opioid derivative, remifentanil has been reported to mitigate renal injury and sepsis. Nevertheless, whether remifentanil also suppresses sepsis-triggered renal injury is uncertain. The aim of this study was to investigate the effect of remifentanil on endoplasmic reticulum stress (ERS) and inflammatory response in an in vitro lipopolysaccharide (LPS)-stimulated renal tubular epithelial cell (HK-2) model and its mechanism. The viability of HK-2 cells with the absence or presence of LPS treatment was surveyed by cell counting kit-8 assay. Under the condition of LPS treatment, apoptosis was appraised by TUNEL assay and western blot. Levels of inflammatory factors were estimated though corresponding kits. Western blot tested the expression of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling-associated proteins. Also, the expression of ERS-related proteins was detected by western blot. Further, ERS inducer tunicamycin (TM) was added and the aforementioned experiments were conducted again. The results underlined the protective effects of remifentanil on LPS-evoked viability injury, inflammation, activation of TLR4/NF-κB signaling and ERS in HK-2 cells. Moreover, the impacts of remifentanil on the biological events of LPS-insulted HK-2 cells were all reversed by TM administration. To conclude, remifentanil might have a remarkable ameliorative effect on sepsis-induced renal injury, which implied the potential of remifentanil-based drug therapy in sepsis-induced renal injury.
Collapse
Affiliation(s)
- Yixiu Yan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dan Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Li N, Wen L, Yu Z, Li T, Wang T, Qiao M, Song L, Huang X. Effects of folic acid on oxidative damage of kidney in lead-exposed rats. Front Nutr 2022; 9:1035162. [PMID: 36458173 PMCID: PMC9705793 DOI: 10.3389/fnut.2022.1035162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION Lead (Pb) has many applications in daily life, but in recent years, various problems caused by lead exposure have aroused people's concern. Folic acid is widely found in fruits and has received more attention for its antioxidant function. However, the role of folic acid in lead-induced kidney injury in rats is unclear. This study was designed to investigate the effects of folic acid on oxidative stress and endoplasmic reticulum stress in the kidney of rats caused by lead exposure. METHODS Forty specific pathogen-free male Rattus norvegicus rats were randomly divided into control, lead, intervention, and folic acid groups. The levels of SOD, GSH-Px, GSH, and MDA were measured by biochemical kits. The protein levels of Nrf2, HO-1, CHOP, and GRP78 were measured by immunofluorescence. RESULTS This study showed that lead exposure increased the blood levels of lead in mice. However, the intervention of folic acid decreased the levels of lead, but the difference was not statistically significant. Lead exposure causes oxidative stress by decreasing kidney SOD, GSH-Px, and GSH levels and increasing MDA levels. However, folic acid alleviated the oxidative damage caused by lead exposure by increasing the levels of GSH-Px and GSH and decreasing the levels of MDA. Immunofluorescence results showed that folic acid intervention downregulated the upregulation of kidney Nrf2, HO-1, GRP78, and CHOP expression caused by lead exposure. DISCUSSION Overall, folic acid alleviates kidney oxidative stress induced by lead exposure by regulating Nrf2 and HO-1, while regulating CHOP and GRP78 to mitigate apoptosis caused by excessive endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Wang Y, Zhang Y, Sun X, Shi X, Xu S. Microplastics and di (2-ethylhexyl) phthalate synergistically induce apoptosis in mouse pancreas through the GRP78/CHOP/Bcl-2 pathway activated by oxidative stress. Food Chem Toxicol 2022; 167:113315. [PMID: 35863481 DOI: 10.1016/j.fct.2022.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 μg/mL MPs and 200 μM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Dixit P, Suratkal SS, Kokate SB, Chakraborty D, Poirah I, Samal S, Rout N, Singh SP, Sarkar A, Bhattacharyya A. Siah2-GRP78 interaction regulates ROS and provides a proliferative advantage to Helicobacter pylori-infected gastric epithelial cancer cells. Cell Mol Life Sci 2022; 79:414. [PMID: 35816252 PMCID: PMC11072387 DOI: 10.1007/s00018-022-04437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori-mediated gastric carcinogenesis involves upregulation of the E3 ubiquitin ligase Siah2 and its phosphorylation-mediated stabilization. This study elucidates a novel mechanism of oxidative stress regulation by phosphorylated Siah2 in H. pylori-infected gastric epithelial cancer cells (GECs). We identify that H. pylori-mediated Siah2 phosphorylation at the 6th serine residue (P-S6-Siah2) enhances proteasomal degradation of the 78-kDa glucose-regulated protein (GRP78) possessing antioxidant functions. S6 phosphorylation stabilizes Siah2 and P-S6-Siah2 potentiates H. pylori-mediated reactive oxygen species (ROS) generation. However, infected S6A phospho-null Siah2-expressing cells have decreased cellular GRP78 level as surprisingly these cells release GRP78 to a higher extent and accumulate significantly higher ROS than the wild type (WT) Siah2 construct-expressing cells. Ectopic expression of GRP78 prevents the loss of mitochondrial membrane potential and cellular ROS accumulation caused by H. pylori. H. pylori-induced mitochondrial damage and mitochondrial membrane potential loss are potentiated in Siah2-overexpressing cells but these effects are further enhanced in S6A-expressing cells. This study also confirms that while phosphorylation-mediated Siah2 stabilization optimally upregulates aggresome accumulation, it suppresses autophagosome formation, thus decreasing the dependency on the latter mechanism in regulating cellular protein abundance. Disruption of the phospho-Siah2-mediated aggresome formation impairs proliferation of infected GECs. Thus, Siah2 phosphorylation has diagnostic and therapeutic significance in H. pylori-mediated gastric cancer (GC).
Collapse
Affiliation(s)
- Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
| | - Swathi Shivaram Suratkal
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
- HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014, Helsinki, Finland
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
| | - Supriya Samal
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India
| | - Niranjan Rout
- Department of Pathology, Acharya Harihar Post Graduate Institute of Cancer, Cuttack, Odisha, 753007, India
| | - Shivaram P Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Odisha, 753007, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, 751024, India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Jatni, Odisha, 752050, India.
| |
Collapse
|
8
|
Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother 2022; 150:112936. [PMID: 35421784 DOI: 10.1016/j.biopha.2022.112936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury (CRI) is a common pathological damage in chronic renal disease, and the therapeutic options for preventing its progression are limited at present. Ginsenoside Rg1 (Rg1) is reported to have a protective effect on renal injury by improving oxidative stress and inflammation. Lipopolysaccharide (LPS) plays important roles in inducing inflammatory and high-dose LPS is often used to perform acute renal injury. However, little is known about the effect of low-dose LPS on CRI, and the protective effect of Rg1 against chronic LPS-induced CRI. Here, we reported the protective effect and mechanism of Rg1 against LPS-induced CRI in mice. In this study, the results demonstrated that low-dose LPS (0.25 mg/kg) exposure for 14 days significantly induced renal function impairment and renal injury and fibrosis. Meanwhile, LPS exposure significantly increased reactive oxygen species (ROS) generation, NADPH oxidase 4 (NOX4) and NLRP3 inflammasome expression in renal cortex. However, treatment with Rg1, tempol (a superoxide dismutase mimetic), and apocynin (a NOX inhibitor) significantly improved renal function impairment and renal fibrosis, and significantly decreased the levels of TGF-β, IL-1β, KIM-1, β-Gal, and collagen IV in the kidneys. And Rg1 treatment also significantly reduced ROS generation and inhibited the activation of NOX4 and NLRP3 inflammasome. Overall, these results suggest that Rg1 treatment can ameliorate LPS-induced chronic kidney injury and renal fibrosis, the mechanisms may be involved in reducing NOX2-mediated oxidative stress and inhibiting NLRP1 inflammasome.
Collapse
Affiliation(s)
- Duoduo Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Pengmin Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huimin Zhou
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liangliang Kong
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Qian J, Liu XR, Li Q, Wang B, Lin KW, Deng T, Huang QF, Xu SQ, Wang HF, Wu XX, Li N, Yi Y, Peng JC, Huang Y. Anthrahydroquinone-2,6-disulfonate alleviates paraquat-induced kidney injury via the apelin-APJ pathway in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Wang X, Zhang Y, Wuyun K, Gong H. Therapeutic effect and mechanism of 4‑phenyl butyric acid on renal ischemia‑reperfusion injury in mice. Exp Ther Med 2021; 23:144. [PMID: 35069825 PMCID: PMC8756420 DOI: 10.3892/etm.2021.11067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/06/2021] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the effects and possible mechanism of 4-phenylbutyric acid (4-PBA) on renal ischemia-reperfusion injury (RIRI) in mice. A RIRI model of HK-2 cells was constructed using hypoxia/reoxygenation (H/R) treatment. Dexmedetomidine and 4-PBA were used to treat the cells before and after modeling. Apoptosis and expression levels of cyclophilin D (CypD), cytochrome c, eukaryotic translation initiation factor 2α (eIF2α), glucose-regulated protein 78 (GRP78), intercellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 were measured using flow cytometry, western blotting and immunohistochemistry. The renal volume, weight and renal arterial resistance index (RRI) were determined using the renal ischemia model. Compared with untreated model cells, 4-PBA treatment significantly decreased apoptosis and the expression levels of CypD, Cytochrome c, eIF2α and GRP78 in HK-2 cells. There was no significant change in renal volume and weight after modeling, but RRI was significantly decreased after 4-PBA treatments in the model. Western blotting and immunohistochemistry analysis demonstrated that 4-PBA treatment also significantly decreased the expression of ICAM-1 and VCAM-1. Overall, 4-PBA had a therapeutic effect on RIRI in mice. This protection may be mediated by decreasing the expression levels of CypD, Cytochrome c, eIF2α and GRP78, and subsequent reduction of cellular oxygen free radicals and apoptosis, leading to an alleviated endoplasmic reticulum stress response and RIRI.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kun Wuyun
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haixia Gong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Li M, Zhang Y, Wang J. Endoplasmic reticulum stress regulates cell injury in lipopolysaccharide-induced nerve cells. J Int Med Res 2020; 48:300060520949762. [PMID: 32910707 PMCID: PMC7488914 DOI: 10.1177/0300060520949762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and excessive endoplasmic reticulum (ER) stress is closely correlated with the cell injury caused by sepsis. This study aimed to analyze the possible role of ER stress in SAE cell models. METHODS PC12 and MES23.5 cells were treated with increasing concentrations of lipopolysaccharides (LPS). The Cell Counting Kit-8 assay was used to detect cell viability and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess cell apoptosis. In addition, the protein expression levels of ER stress markers [GRP78, CHOP, inositol-requiring enzyme 1 (IRE1), and PKR-like ER kinase (PERK)] and apoptosis-related proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) were analyzed using western blotting. RESULTS LPS treatment activated ER stress markers in both the PC12 and MES23.5 cells. The overexpression of GRP78 significantly reduced cell viability and enhanced cell apoptosis in a time-dependent manner. An ER stress inhibitor, 4-PBA, significantly enhanced cell viability and inhibited the cell apoptosis induced by LPS. Therefore, an enhanced unfolded protein response (UPR) and UPR suppression may regulate cell apoptosis. CONCLUSIONS UPR was shown to be involved in regulating LPS-induced neuron injury. UPR could be a potential therapeutic target in SAE.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, People's Hospital of Gaotang County, Liaocheng, Shandong, China
| | - Ying Zhang
- Department of Neurology, People's Hospital of Gaotang County, Liaocheng, Shandong, China
| | - Jixing Wang
- Department of Neurology, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
12
|
Raw and salt-processed Achyranthes bidentata attenuate LPS-induced acute kidney injury by inhibiting ROS and apoptosis via an estrogen-like pathway. Biomed Pharmacother 2020; 129:110403. [PMID: 32574970 DOI: 10.1016/j.biopha.2020.110403] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine suggests that Radix Achyranthis Bidentatae nourishes and protects the kidneys, the effect of which is enhanced following a salt treatment. Raw and salt-processed Achyranthes bidentata are produced via different processing techniques from the same crude Achyranthes root. The anti-inflammatory and immunomodulatory properties of this plant have been verified earlier. However, there is a scarcity of experimental evidence for the renal-protective effects. AIM The purpose of present study is to compare the protective effects of raw and salt-processed Achyranthes on lipopolysaccharide (LPS) - induced acute kidney injury in mice and chemically characterize their extracts. METHOD The monomer components of raw and salt-processed Achyranthes extracts were analyzed using high performance liquid chromatography (HPLC). The aggregation and distribution of 2-Deoxy-D-glucose (2-DG) near infrared fluorescence probe in mice was examined with a small animal imaging systems. The pathological and morphological changes of kidneys were observed by H&E staining, and the serum urea nitrogen (BUN) and serum creatinine (Scr) levels were used to evaluate the renal function. The levels of cytokines in serum were detected by cytometric bead array. Flow cytometry assay was performed to assess the apoptosis and reactive oxygen species (ROS) in the kidney cells, and cell surface marker expression including CD45+, F4/80+, and Ly-6G+. The estrogenic activities of the raw and salt-processed Achyranthes were observed by uterine weight gain test in sexually immature mice. Western blot was used to detect the protein expression levels in the kidney. RESULTS Chemical analysis showed that the salt-processed Achyranthes contained more ginsenoside Ro and chikusetsusaponin Ⅳa than the raw Achyranthes, but there was no difference in the contents of β-ecdysterone, 25R-inokosterone, and 25S-inokosterone.in vivo near-infrared fluorescence imaging showed a significant reduced inflammation in the AKI mice. Histological studies showed that the raw and salt-processed Achyranthes markedly decreased the inflammatory infiltration, swelling and vacuolar degeneration in renal tissues and the Scr and BUN. Importantly, the raw and salt-processed Achyranthes extracts demonstrated different degrees of inhibition on the LPS-induced AKI, with salt-processed Achyranthes showing better inhibition. Results of flow cytometry showed a significant inhibition of IFN-γ, TNF-α, and IL-2, and promoted IL-10, along with reduced macrophages (CD45 + F4/80+), neutrophils (CD45+ Ly-6G+) and phagocytes. Furthermore, the extracts reduced the accumulation of ROS and apoptosis in the kidney, and also regulated the expression of apoptosis marker proteins TLR4, Bcl-2, Bax, cleaved caspase 3 and cleaved caspase 9 levels. Notably, they increased ERα, ERβ, and GPR30 in the renal tissues of AKI mice and LPS non-treated mice. In the subsequent experiments, it was found that the raw and salt-processed Achyranthes extracts increased the uterine coefficient in sexually immature mice, improved the LPS-induced decrease in NRK52e cell viability, and reduced the apoptosis, which could be antagonized by ICI182, 780 (estrogen receptor-unspecific antagonist, Faslodex). CONCLUSIONS The renal-protective effect of raw and salt-processed Achyranthes was exhibited through antiapoptotic and antioxidant mechanisms via an estrogen-like pathway, along with a modulation of the inflammatory response by regulating immune cells. Ginsenoside Ro and Chikusetsu saponin IVa were found to be the key factors to enhance the protective effect of salt-processed Achyranthes.
Collapse
|
13
|
Sun W, Li H, Gu J. Up-regulation of microRNA-574 attenuates lipopolysaccharide- or cecal ligation and puncture-induced sepsis associated with acute lung injury. Cell Biochem Funct 2020; 38:847-858. [PMID: 32090367 DOI: 10.1002/cbf.3496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is the most vulnerable organ in sepsis, however, its underlying mechanism remains unclear. Cell viability and apoptosis were detected by cell counting kit-8 and flow cytometry. The expressions of miR-574, Complement 3 (C3), glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP) and Caspase-12 were determined using quantitative real time (qRT)-PCR and Western blot. Histopathology of mice was stained by haematoxylin and eosin staining. The levels of tumour necrosis factor-α (TNF-α) and interleukin (IL)-1β were determined using ELISA. The expression of miR-574 was positively correlated with cell viability in lipopolysaccharide (LPS)-treated cells. Cell viability was improved and apoptosis was inhibited by mimics. Meanwhile, the levels of GRP78, CHOP and Caspase-12 were suppressed by mimics and agomir in LPS-treated human bronchial epithelial (HBE) cells and cecal ligation and puncture (CLP)-treated mice. In vivo, lung tissue damages were ameliorated by agomir, which also decreased the levels of neutrophils, macrophages and albumin. C3 was a target gene of miR-574 and could be decreased by mimics. SiC3 enhanced cell viability and inhibited apoptosis, however, it suppressed the mRNA levels of GRP78, CHOP and Caspase-12. Up-regulation of miR-574 attenuated sepsis-induced lung injury may be by promoting C3 down-regulation and reducing sepsis-induced endoplasmic reticulum stress (ERS). SIGNIFICANCE OF THE STUDY: Clinically, the mortality rate of ALI induced by sepsis remains at a high level, thus, clarifying the mechanism of induction of ALI through pathogen infection will provide a new target for clinical treatment of ALI. In this study, up-regulation of miR-574 attenuated sepsis-induced lung injury may be by promoting C3 down-regulation and reducing sepsis-induced ERS. Our study provides a deeper understanding of sepsis.
Collapse
Affiliation(s)
- Wenwen Sun
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Li
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Methane-Rich Saline Ameliorates Sepsis-Induced Acute Kidney Injury through Anti-Inflammation, Antioxidative, and Antiapoptosis Effects by Regulating Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4756846. [PMID: 30581532 PMCID: PMC6276407 DOI: 10.1155/2018/4756846] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Sepsis-induced acute kidney injury (AKI) is a severe complication of sepsis and an important cause of mortality in septic patients. Previous investigations showed that methane had protective properties against different diseases in animal models. This study is aimed at investigating whether methane-rich saline (MRS) has a protective effect against sepsis-induced AKI. Sepsis was induced in wild-type C57BL/6 mice by cecal ligation and puncture (CLP), and the mice were divided into three groups: a sham control group (sham), a surgery group with saline intraperitoneal injection (i.p.) treatment (CLP + NS), and a surgery group with MRS i.p. treatment (CLP + MRS). 24 h after the establishment of the sepsis, the blood and kidney tissues of mice in all groups were collected. According to the serum levels of blood urea nitrogen (BUN) and creatinine (CRE) and a histologic analysis, which included hematoxylin-eosin (H&E) staining and periodic acid-Schiff (PAS) staining, MRS treatment protected renal function and tissues from acute injury. Additionally, MRS treatment significantly ameliorated apoptosis, based on the levels of apoptosis-related protein makers, including cleaved caspase-3 and cleaved PARP, and the levels of Bcl-2/Bax expression and TUNEL staining. In addition, the endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP)/caspase-12 apoptosis signaling pathway was significantly suppressed in the CLP + MRS group. The levels of inflammation and oxidative stress were also reduced after MRS treatment. These results showed that MRS has the potential to ameliorate sepsis-induced acute kidney injury through its anti-inflammatory, antioxidative, and antiapoptosis properties.
Collapse
|
15
|
Yu X, Meng X, Xu M, Zhang X, Zhang Y, Ding G, Huang S, Zhang A, Jia Z. Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-κB and improving mitochondrial function. EBioMedicine 2018; 36:266-280. [PMID: 30268831 PMCID: PMC6197337 DOI: 10.1016/j.ebiom.2018.09.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Celastrol is an active ingredient of Chinese medicine Tripterygium wilfordii which is clinically used to treat the immune diseases. Currently, celastrol is documented as a potent agent for treating cancer and inflammatory disorders. This study was to investigate the effect of celastrol on cisplatin nephrotoxicity and the underlying mechanism. METHODS Male C57BL/6 mice were treated with cisplatin (20 mg/kg) with or without celastrol treatment (1 and 2 mg/kg/day). In vitro, human proximal tubule epithelial cell line (HK-2) and mouse renal tubule epithelial cells (RTECs) were treated with cisplatin (5 μg/mL) with or without celastrol administration. Then renal injury and cell damage were evaluated. FINDINGS In vivo, after celastrol treatment, cisplatin-induced kidney injury was significantly ameliorated as shown by the improvement of renal function (BUN, serum creatinine, and cystatin C), kidney morphology (PAS staining) and oxidative stress (MDA) and the suppression of renal tubular injury markers of KIM-1 and NGAL. Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in celastrol-treated mice. In vitro, celastrol treatment markedly inhibited cisplatin-induced renal tubular cell apoptosis, suppressed NF-κB activation, and improved mitochondrial function evidenced by the restored mtDNA copy number, mitochondrial membrane potential, and OXPHOS activity in cisplatin-treated renal tubular epithelial cells. INTERPRETATION This work suggested that celastrol could protect against cisplatin-induced acute kidney injury possibly through suppressing NF-κB and improving mitochondrial function. FUND: The National Natural Science Foundation of China, National Key Research and Development Program, and Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xia Meng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Man Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xuejuan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|