1
|
Barba E, Molina JM, Rodríguez F, Ferrer O, Muñoz MC, Silva LMR, Del Río MC, Molina JA, Taubert A, Hermosilla C, Ruiz A. Isolation of a Novel Caprine Eimeria christenseni Strain (GC) in Canary Islands and Analysis of Parasitological, Clinical, and Pathological Findings on Experimentally Infected Goat Kids. Animals (Basel) 2025; 15:139. [PMID: 39858138 PMCID: PMC11758610 DOI: 10.3390/ani15020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Eimeria christenseni is considered among the most pathogenic Eimeria species in goats. The aim of this study was to isolate an E. christenseni strain and to assess its infectivity, pathogenicity, and ability to develop a protective immune response. After previous collection of E. christenseni-positive faeces, purification of oocysts, and amplification in donor animals, an experimental infection was carried out. A total of 19 kids were divided into three groups: primary-infected and challenged, challenge control, and uninfected control. Infections were performed orally with 2 × 105 sporulated oocysts per animal. Oocyst shedding, clinical signs, and production parameters, in addition to haematological and histopathological features, were monitored. The results showed that the Gran Canaria (GC) E. christenseni strain had similar morphological and biological characteristics to those previously described, but no significant clinical signs were observed despite the high oocyst counts here recorded. The novel strain isolated would therefore be of low pathogenicity but still able to develop significant immunoprotective responses upon challenge infections. Its biological similarities to highly pathogenic species such as Eimeria ninakohlyakimovae and Eimeria arloingi might enable comparative studies aimed at developing alternative strategies for drug treatments, including Eimeria species (strain)-specific vaccination strategies for the efficient control of goat coccidiosis.
Collapse
Affiliation(s)
- Emilio Barba
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - José Manuel Molina
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - Francisco Rodríguez
- Department of Anatomy and Compared Anatomy Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Otilia Ferrer
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - María Carmen Muñoz
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - Liliana M. R. Silva
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.M.R.S.); (A.T.); (C.H.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Portugal
| | - María Cristina Del Río
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - José Adrián Molina
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| | - Anja Taubert
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.M.R.S.); (A.T.); (C.H.)
| | - Carlos Hermosilla
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, 35390 Giessen, Germany; (L.M.R.S.); (A.T.); (C.H.)
| | - Antonio Ruiz
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas of Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (E.B.); (J.M.M.); (O.F.); (M.C.M.); (J.A.M.)
| |
Collapse
|
2
|
Velásquez ZD, Rojas-Barón L, Larrazabal C, Salierno M, Gärtner U, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Neospora caninum Infection Triggers S-phase Arrest and Alters Nuclear Characteristics in Primary Bovine Endothelial Host Cells. Front Cell Dev Biol 2022; 10:946335. [PMID: 36111335 PMCID: PMC9469085 DOI: 10.3389/fcell.2022.946335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neospora caninum represents a major cause of abortive disease in bovines and small ruminants worldwide. As a typical obligate intracellular apicomplexan parasite, N. caninum needs to modulate its host cell for successful replication. In the current study, we focused on parasite-driven interference with host cell cycle progression. By performing DNA content-based cell cycle phase analyses in N. caninum-infected primary bovine umbilical vein endothelial cells (BUVEC), a parasite-driven S-phase arrest was detected at both 24 and 32 h p. i., being paralleled by fewer host cells experiencing the G0/G1 cell cycle phase. When analyzing S-subphases, proliferation cell nuclear antigen (per PCNA)-based experiments showed a reduced population of BUVEC in the late S-phase. Analyses on key molecules of cell cycle regulation documented a significant alteration of cyclin A2 and cyclin B1 abundance in N. caninum-infected host endothelial cells, thereby confirming irregularities in the S-phase and S-to-G2/M-phase transition. In line with cell cycle alterations, general nuclear parameters revealed smaller nuclear sizes and morphological abnormalities of BUVEC nuclei within the N. caninum-infected host cell layer. The latter observations were also confirmed by transmission electron microscopy (TEM) and by analyses of lamin B1 as a marker of nuclear lamina, which illustrated an inhomogeneous nuclear lamin B1 distribution, nuclear foldings, and invaginations, thereby reflecting nuclear misshaping. Interestingly, the latter finding applied to both non-infected and infected host cells within parasitized BUVEC layer. Additionally, actin detection indicated alterations in the perinuclear actin cap formation since typical nucleo-transversal filaments were consistently lacking in N. caninum-infected BUVEC, as also documented by significantly decreased actin-related intensities in the perinuclear region. These data indicate that N. caninum indeed alters host cell cycle progression and severely affects the host cell nuclear phenotype in primary bovine endothelial host cells. In summary, these findings add novel data on the complex N. caninum-specific modulation of host cell and nucleus, thereby demonstrating clear differences in cell cycle progression modulation driven by other closely related apicomplexans like Toxoplasma gondii and Besnotia besnoiti.
Collapse
Affiliation(s)
- Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Zahady D. Velásquez,
| | - Lisbeth Rojas-Barón
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Marcelo Salierno
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Susanne Herold
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Liu Z, Geng X, Zhao Q, Zhu S, Han H, Yu Y, Huang W, Yao Y, Huang B, Dong H. Effects of host vimentin on Eimeria tenella sporozoite invasion. Parasit Vectors 2022; 15:8. [PMID: 34983604 PMCID: PMC8729122 DOI: 10.1186/s13071-021-05107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Chicken coccidiosis is a parasitic disease caused by Eimeria of Apicomplexa, which has caused great economic loss to the poultry breeding industry. Host vimentin is a key protein in the process of infection of many pathogens. In an earlier phosphorylation proteomics study, we found that the phosphorylation level of host vimentin was significantly regulated after Eimeria tenella sporozoite infection. Therefore, we explored the role of host vimentin in the invasion of host cells by sporozoites. Methods Chicken vimentin protein was cloned and expressed. We used qPCR, western blotting, and indirect immunofluorescence to detect levels of mRNA transcription, translation, and phosphorylation, and changes in the distribution of vimentin after E. tenella sporozoite infection. The sporozoite invasion rate in DF-1 cells treated with vimentin polyclonal antibody or with small interfering RNA (siRNA), which downregulated vimentin expression, was assessed by an in vitro invasion test. Results The results showed that vimentin transcription and translation levels increased continually at 6–72 h after E. tenella sporozoite infection, and the total phosphorylation levels of vimentin also changed. About 24 h after sporozoite infection, vimentin accumulated around sporozoites in DF-1 cells. Treating DF-1 cells with vimentin polyclonal antibody or downregulating vimentin expression by siRNA significantly improved the invasion efficiency of sporozoites. Conclusion In this study, we showed that vimentin played an inhibitory role during the invasion of sporozoites. These data provided a foundation for clarifying the relationship between Eimeria and the host. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05107-4.
Collapse
Affiliation(s)
- Zhan Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Xiangfei Geng
- Beijing YuanDa Spark Medicine Technology Co., Ltd, Beijing, 100088, People's Republic of China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Wenhao Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Yawen Yao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, 200241, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Velásquez ZD, López-Osorio S, Mazurek S, Hermosilla C, Taubert A. Eimeria bovis Macromeront Formation Induces Glycolytic Responses and Mitochondrial Changes in Primary Host Endothelial Cells. Front Cell Infect Microbiol 2021; 11:703413. [PMID: 34336724 PMCID: PMC8319763 DOI: 10.3389/fcimb.2021.703413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Eimeria bovis is an intracellular apicomplexan parasite that causes considerable economic losses in the cattle industry worldwide. During the first merogony, E. bovis forms large macromeronts with >140,000 merozoites I in host endothelial cells. Because this is a high-energy demanding process, E. bovis exploits the host cellular metabolism to fulfill its metabolic requirements. We here analyzed the carbohydrate-related energetic metabolism of E. bovis–infected primary bovine umbilical vein endothelial cells during first merogony and showed that during the infection, E. bovis–infected culture presented considerable changes in metabolic signatures, glycolytic, and mitochondrial responses. Thus, an increase in both oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were found in E. bovis–infected host cells indicating a shift from quiescent to energetic cell status. Enhanced levels of glucose and pyruvate consumption in addition to increased lactate production, suggesting an important role of glycolysis in E. bovis–infected culture from 12 days p.i. onward. This was also tested by glycolytic inhibitors (2-DG) treatment, which reduced the macromeront development and diminished merozoite I production. As an interesting finding, we observed that 2-DG treatment boosted sporozoite egress. Referring to mitochondrial activities, intracellular ROS production was increased toward the end of merogony, and mitochondrial potential was enhanced from 12 d p. i. onward in E. bovis–infected culture. Besides, morphological alterations of membrane potential signals also indicated mitochondrial dysfunction in macromeront-carrying host endothelial culture.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.,Research Group CIBAV, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
5
|
Velásquez ZD, López-Osorio S, Waiger D, Manosalva C, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Eimeria bovis infections induce G 1 cell cycle arrest and a senescence-like phenotype in endothelial host cells. Parasitology 2021; 148:341-353. [PMID: 33100232 PMCID: PMC7890351 DOI: 10.1017/s0031182020002097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023]
Abstract
Apicomplexan parasites are well-known to modulate their host cells at diverse functional levels. As such, apicomplexan-induced alteration of host cellular cell cycle was described and appeared dependent on both, parasite species and host cell type. As a striking evidence of species-specific reactions, we here show that Eimeria bovis drives primary bovine umbilical vein endothelial cells (BUVECs) into a senescence-like phenotype during merogony I. In line with senescence characteristics, E. bovis induces a phenotypic change in host cell nuclei being characterized by nucleolar fusion and heterochromatin-enriched peripheries. By fibrillarin staining we confirm nucleoli sizes to be increased and their number per nucleus to be reduced in E. bovis-infected BUVECs. Additionally, nuclei of E. bovis-infected BUVECs showed enhanced signals for HH3K9me2 as heterochromatin marker thereby indicating an infection-induced change in heterochromatin transition. Furthermore, E. bovis-infected BUVECs show an enhanced β-galactosidase activity, which is a well-known marker of senescence. Referring to cell cycle progression, protein abundance profiles in E. bovis-infected endothelial cells revealed an up-regulation of cyclin E1 thereby indicating a cell cycle arrest at G1/S transition, signifying a senescence key feature. Similarly, abundance of G2 phase-specific cyclin B1 was found to be downregulated at the late phase of macromeront formation. Overall, these data indicate that the slow proliferative intracellular parasite E. bovis drives its host endothelial cells in a senescence-like status. So far, it remains to be elucidated whether this phenomenon indeed reflects an intentionally induced mechanism to profit from host cell-derived energy and metabolites present in a non-dividing cellular status.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Research Group CIVAB, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Daniel Waiger
- Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Hebrew University of Jerusalem Israel, Rehovot, Israel
| | - Carolina Manosalva
- Faculty of Veterinary Sciences, Institute of Pharmacology, Universidad Austral de Chile, Valdivia, Chile
| | - Learta Pervizaj-Oruqaj
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Concomitant in vitro development of Eimeria zuernii- and Eimeria bovis-macromeronts in primary host endothelial cells. Parasitol Int 2018; 67:742-750. [DOI: 10.1016/j.parint.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/16/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
|
7
|
A newly described strain of Eimeria arloingi (strain A) belongs to the phylogenetic group of ruminant-infecting pathogenic species, which replicate in host endothelial cells in vivo. Vet Parasitol 2017; 248:28-32. [PMID: 29173537 DOI: 10.1016/j.vetpar.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 11/21/2022]
Abstract
Coccidiosis caused by Eimeria species is an important disease worldwide, particularly in ruminants and poultry. Eimeria infection can result in significant economic losses due to costs associated with treatment and slower growth rates, or even with mortality of heavily infected individuals. In goat production, a growing industry due to increasing demand for caprine products worldwide, coccidiosis is caused by several Eimeria species with E. arloingi and E. ninakohlyakimovae the most pathogenic. The aims of this study were genetic characterization of a newly isolated European E. arloingi strain (A) and determination of phylogenetic relationships with Eimeria species from other ruminants. Therefore, a DNA sequence of E. arloingi strain (A) containing 2290 consensus nucleotides (the majority of 18S rDNA, complete ITS-1 and 5.8S sequences, and the partial ITS-2) was amplified and phylogenetic relationship determined with the most similar sequences available on GenBank. The phylogenetic tree presented a branch constituted by bovine Eimeria species plus E. arloingi, and another one exclusively populated by ovine Eimeria species. Moreover, E. arloingi, E. bovis and E. zuernii, which all replicate in host intestinal endothelial cells of the lacteals, were found within the same cluster. This study gives new insights into the evolutionary phylogenetic relationships of this newly described caprine Eimeria strain and confirmed its close relationship to other highly pathogenic ruminant Eimeria species characterized by macromeront formation in host endothelial cells of the central lymph capillaries of the small intestine.
Collapse
|
8
|
Abstract
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Collapse
|
9
|
Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development. Parasitol Res 2014; 113:4165-76. [DOI: 10.1007/s00436-014-4092-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
10
|
Hermosilla C, Ruiz A, Taubert A. Eimeria bovis: An update on parasite–host cell interactions. Int J Med Microbiol 2012; 302:210-5. [DOI: 10.1016/j.ijmm.2012.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
Ruiz A, Matos L, Muñoz MC, Hermosilla C, Molina JM, Andrada M, Rodríguez F, Pérez D, López A, Guedes A, Taubert A. Isolation of an Eimeria ninakohlyakimovae field strain (Canary Islands) and analysis of its infection characteristics in goat kids. Res Vet Sci 2012; 94:277-84. [PMID: 22989759 DOI: 10.1016/j.rvsc.2012.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022]
Abstract
The current study was conducted to isolate a field strain of Eimeria ninakohlyakimovae, characterize its infectivity and the response to challenge under experimental conditions. The isolated strain (GC) induced a prepatent period of 14-15 days p.i., a patency of 7±2 days and a noticeable pathogenicity in infected goat kids. Challenge trials resulting in a decrease of oocysts per gram counts as well as a milder intensity of clinical signs in re-infected animals indicated the capacity of this strain to induce protective immune response. Altogether, the data reported in the present study suggest that the strain E. ninakohlyakimovae GC is a useful tool for the investigation of mechanisms of pathogenicity as well as host protective immune response in caprine coccidiosis, representing a valuable prerequisite for the development of future strategies in prophylaxis and control of this important parasitic disease in goat.
Collapse
Affiliation(s)
- A Ruiz
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Development of Eimeria ninakohlyakimovae in vitro in primary and permanent cell lines. Vet Parasitol 2010; 173:2-10. [DOI: 10.1016/j.vetpar.2010.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 05/24/2010] [Accepted: 05/31/2010] [Indexed: 11/22/2022]
|
13
|
Lutz K, Schmitt S, Linder M, Hermosilla C, Zahner H, Taubert A. Eimeria bovis-induced modulation of the host cell proteome at the meront I stage. Mol Biochem Parasitol 2010; 175:1-9. [PMID: 20801164 DOI: 10.1016/j.molbiopara.2010.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 07/25/2010] [Accepted: 08/20/2010] [Indexed: 01/15/2023]
Abstract
The proteome of Eimeria bovis meront I-carrying host cells was analyzed by two-dimensional gel electrophoresis (2DE) at 14 days p.i. and compared to non-infected control cells. A total of 221 protein spots were modulated in their abundance in E. bovis-infected host cells and were subsequently analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectometry (MALDI-TOF-MS). These analyses identified 104 proteins in total with 25 host cell proteins being up-regulated and 79 proteins being down-regulated in E. bovis-infected host cells. Moreover, 20 newly expressed proteins were identified exclusively in E. bovis-infected host cells and were most likely of parasite origin. Parasite-induced differences in protein abundance concerned distinct functional categories, with most proteins being involved in host cell metabolism, cell structure, protein fate and gene transcription. Some of the modulated molecules also indicated regulatory processes on the level of host cell stress response (HSP70, HSP90), host cell apoptosis (caspase 8) and actin elongation/depolymerization (α-actinin-1, gelsonin, tropomodulin-3, transgelin). Since merozoites I were already released shortly after cell sampling, the current data reflect the situation at the end of first merogony. This is the first proteomic approach on E. bovis-infected host cells that was undertaken to gain a rather broad insight into Eimeria-induced host cell modulation. The data processed in this investigation should provide a useful basis for more detailed analyses concerning Eimeria-host cell interactions.
Collapse
Affiliation(s)
- Kathleen Lutz
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Taubert A, Wimmers K, Ponsuksili S, Jimenez CA, Zahner H, Hermosilla C. Microarray-based transcriptional profiling of Eimeria bovis-infected bovine endothelial host cells. Vet Res 2010; 41:70. [PMID: 20615380 PMCID: PMC2920636 DOI: 10.1051/vetres/2010041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 07/08/2010] [Indexed: 11/17/2022] Open
Abstract
Within its life cycle Eimeria bovis undergoes a long lasting intracellular development into large macromeronts in endothelial cells. Since little is known about the molecular basis of E. bovis-triggered host cell regulation we applied a microarray-based approach to define transcript variation in bovine endothelial cells early after sporozoite invasion (4 h post inoculation (p.i.)), during trophozoite establishment (4 days p.i.), during early parasite proliferation (8 days p.i.) and towards macromeront maturation (14 days p.i.). E. bovis infection led to significant changes in the abundance of many host cell gene transcripts. As infection progressed, the number of regulated genes increased such that 12, 45, 175 and 1184 sequences were modulated at 4 h, 4, 8 and 14 days p.i., respectively. These genes significantly interfered with several host cell functions, networks and canonical pathways, especially those involved in cellular development, cell cycle, cell death, immune response and metabolism. The correlation between stage of infection and the number of regulated genes involved in different aspects of metabolism suggest parasite-derived exploitation of host cell nutrients. The modulation of genes involved in cell cycle arrest and host cell apoptosis corresponds to morphological in vitro findings and underline the importance of these aspects for parasite survival. Nevertheless, the increasing numbers of modulated transcripts associated with immune responses also demonstrate the defensive capacity of the endothelial host cell. Overall, this work reveals a panel of novel candidate genes involved in E. bovis-triggered host cell modulation, providing a valuable tool for future work on this topic.
Collapse
Affiliation(s)
- Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Rudolf-Buchheim-Str. 2, 35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Lang M, Kann M, Zahner H, Taubert A, Hermosilla C. Inhibition of host cell apoptosis by Eimeria bovis sporozoites. Vet Parasitol 2009; 160:25-33. [DOI: 10.1016/j.vetpar.2008.10.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|