1
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Ghashghayi E, Zendehdel M, Khodadadi M, Rahmani B. Central dopaminergic, serotoninergic, as well as GABAergic systems mediate NMU-induced hypophagia in newborn chicken. Int J Neurosci 2024; 134:353-363. [PMID: 35901030 DOI: 10.1080/00207454.2022.2102980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/29/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
AIM Dopaminergic, serotoninergic, and GABAergic systems influence feeding; however, it is unknown how these chemicals interact with neuromedin U (NMU)-induced feeding in birds. In the current study, ten trials were conducted to determine the links between the above-mentioned systems and NMU. MATERIALS AND METHODS In the foremost experimentation, chickens were given intracerebroventricularly injections of NMU (0.1, 1, and 10 µg). NMU (10 µg), SCH23390 (5 nmol), a D1 receptor antagonist, and NMU + SCH23390 were administered in the second experiment. In subsequent experiments, instead of SCH23390, were applied AMI-193 (5 nmol D2 receptor antagonist), NGB2904 (6.4 nmol D3 receptor antagonist), L-741,742 (6 nmol D4 receptor antagonist), 6-OHDA (2.5 nmol dopamine inhibitor), SB242084 (5-HT2c receptor antagonist, 1.5 μg), 8-OH-DPAT (5-HT1A receptor agonist, 15.25 nmol), picrotoxin (GABAA receptor antagonist, 0.5 μg), and CGP54626 (GABAB receptor antagonist, 20 ng). Then, cumulative intake of food was recorded for 2 h. RESULTS According to the results, NMU reduced feeding when compared to the control group (p < 0.05). The NMU-induced hypophagia was reduced with co-injection of NMU and SCH23390 (p < 0.05). Hypophagia was diminished with NMU and AMI-193 (p < 0.05). NMU + NGB2904 and NMU + L-741,742 co-injections had no influence (p > 0.05). 6-OHDA reduced the hypophagia (p < 0.05). NMU and SB242084 decreased the hypophagia (p < 0.05), whereas NMU and 8-OH-DPAT had no effect (p > 0.05). The effects were amplified with picrotoxin (p < 0.05). NMU with CGP54626 had no influence on the hypophagia (p > 0.05). CONCLUSION Thus, NMU-induced hypophagia is probably mediated by D1/D2, 5-HT2c, and GABAA receptors in neonatal chicks.
Collapse
Affiliation(s)
- Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mina Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Behrouz Rahmani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Gholami Ahmadabadi K, Zendehdel M, Vazir B, Asghari A, Babapour V. Possible effects of the central adrenergic and dopaminergic receptors on hypophagia induced by neuromedin S in neonatal layer-type chicks. Gen Comp Endocrinol 2022; 321-322:114032. [PMID: 35331741 DOI: 10.1016/j.ygcen.2022.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
The current study was aimed to determine the possible effects of the central adrenergic and dopaminergic receptors in neuromedin S (NMS)-induced hypophagia in neonatal layer-type chickens. In the first experiment, control solution, and NMS (0.25, 0.5, and 1 nmol), were injected (intracerebroventricular (ICV)) in chickens. In the second experiment, birds were injected with a control solution,SCH23390 (D1receptor antagonist, 5 nmol), NMS (1 nmol), and a combination of the SCH23390 + NMS. Experiments 3-11 were similar to experiment 2, except that chickens were injected withAMI-193 (D2receptor antagonist, 5 nmol), NGB2904(D3receptor antagonist, 6.4 nmol), L-741,742(D4receptor antagonist, 6 nmol), 6-OHDA(6-hydroxydopamine, 2.5 nmol),Prazosin(α1receptor antagonist, 10 nmol),Yohimbine(α2receptor antagonist, 13 nmol),Metoprolol(β1receptor antagonist receptor, 24 nmol),ICI 118,551 (β2receptor antagonist, 5 nmol),SR 59230R (β3 receptor antagonist, 20 nmol) instead ofSCH23390. Then, cumulative food intake was recorded at 30, 60, and 120 min following the injection. According to the results, food intake was significantly decreased after ICV injection of NMS in a dose -dependent manner (P < 0.05). Also, the co-injection of the SCH23390 + NMS significantly attenuated NMS-induced hypophagia (P < 0.05). The co-administration of AMI-193 + NMS significantly reduced NMS- induced hypophagia (P < 0.05). In addition, the co-injection of ICI 118,551 + NMS and 6-OHDA + NMS considerably decreased NMS-induced food consumption (P < 0.05). However, NGB2904, L-741742, Prazosin, Yohimbine, Metoprolol and SR 59230R had no effect on hypophagia induced by NMS (P > 0.05). These results demonstrated thatNMS- induced hypophagia might be mediated by D1/D2 dopaminergic andβ2adrenergic receptors in neonatal layer-type chickens.
Collapse
Affiliation(s)
- Kourosh Gholami Ahmadabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Bita Vazir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahamd Asghari
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
4
|
Rahmani B, Ghashghayi E, Zendehdel M, Khodadadi M, Hamidi B. The Crosstalk Between Brain Mediators Regulating Food Intake Behavior in Birds: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10257-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Mediatory role of the dopaminergic system through D1 receptor on glycine-induced hypophagia in neonatal broiler-type chickens. Amino Acids 2021; 53:461-470. [PMID: 33649971 DOI: 10.1007/s00726-021-02963-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to examine the mediatory role of the dopaminergic system in the food intake induced by intracerebroventricular (ICV) injection of glycine in neonatal 3-h feed-deprived (FD3) meat-type chickens. In the first and second experiments, birds were ICV injected using low and high doses of glycine (50, 100 and 200 nmol) and strychnine (50, 100 and 200 nmol), respectively. In experiments 3-9, the behaviorally subeffective doses of dopamine (10 nmol), 6-OHDA (2.5 nmol), SCH 23,390 (D1 antagonist; 5 nmol), AMI-193 (D2 antagonist; 5 nmol), NGB2904 (D3 antagonist; 6.4 nmol) and L-741,742 (D4 antagonist; 6 nmol) were, respectively, co-administrated with glycine (200 nmol) in FD3 5-day-old chicks to investigate possible interplay of dopamine receptors in glycine-induced feeding behavior. Then, cumulative food intake based on body weight percentage (%BW) was determined at 30, 60 and 120 min after the injection. According to the results, dopamine significantly boosted the hypophagia induced by glycine at all-time intervals (p ≤ 0.001). These results combined with the previous findings suggest an interplay between dopamine and glycine in chicken's brain in which D1 receptor-mediated food intake induced by glycine.
Collapse
|
6
|
Zendehdel M, Hassanpour S, Movahedi N. Central and peripheral methylamine-induced hypophagia is mediated via nitric oxide and TAAR 1 in neonatal layer-type chicken. Neurosci Lett 2020; 739:135408. [PMID: 33027685 DOI: 10.1016/j.neulet.2020.135408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
The aim of the current study was to determine effects of intracerebroventricular (ICV) and intraperitoneal (i.p.) administration of Methylamine (MET) and possible interactions with nitric oxide (NO) and TAAR1 pathways in 24-h fasted (FD24) and ad libitum layer-type chicken. In experiment 1, FD24 chicken ICV injected with MET (15, 30, 45, 60 and 75 μg). In experiment 2, ICV injection of MET (15, 30, 45, 60 and 75 μg) was injected in the ad libitum birds. Experiments 3-4 were similar to experiments 1-2, except chicken i.p. injected with MET (15, 30, 45, 60 and 75 mg/kg). In experiment 5, FD24 birds ICV injected with l-NAME (NO synthesis inhibitor, 100 nmol), MET (75 μg) and co-injection of l-NAME + MET. Experiment 6 was similar to experiment 5, except, ad libitum birds received injections. In experiment 7, FD24 chicken i.p. injected with l-NAME (100 mg/kg), MET (75 mg/kg) and co-injection of l-NAME + MET. In experiment 8, FD24 birds ICV injected with RO5256390 (selective TAAR1 agonist, 10, 20 and 40 μg). In experiment 9, ad libitum birds ICV injected with RO5256390 (10, 20 and 40 μg). In experiment 10, FD24 birds ICV injected with RO5256390 (10 μg), MET (75 μg) and their co-injection. Experiment 11 was similar to experiment 10, except, ad libitum birds received ICV injections. In experiment 12, FD24 chicken i.p. injected with RO5256390 (2.5, 5 and 10 mg/kg). In experiment 13, FD24 chicken i.p. injected with RO5256390 (2.5 mg/kg), MET (75 mg/kg) and RO5256390 + MET. Then cumulative food intake was determined until 120 min after injection. According to the results, ICV injection of MET decreased food intake in FD24 and ad libitum chicken (P < 0.05). MET (i.p.) diminished food consumption in fasted (P < 0.05) but not in ad libitum chicken (P> 0.05). Co-injection of the l-NAME + MET significantly decreased MET-induced hypophagia in FD24 and ad libitum chicken (P < 0.05). MET-induced hypophagia (i.p.) weakened by l-NAME in FD24 chicken (P < 0.05). RO5256390 decreased food intake in FD24 and ad libitum chicken (P < 0.05). Co-injection of RO5256390 + MET increased MET-induced hypophagia in FD24 and ad libitum chicken (P < 0.05). RO5256390 decreased food intake in FD24 chicken (P < 0.05). Co-injection of the RO5256390 + MET amplified MET-induced hypophagia in FD24 chicken (P < 0.05). Based on the findings, MET-induced hypophagia is mediated via NO and TAAR1 pathways on food intake in layer chicken.
Collapse
Affiliation(s)
- Morteza Zendehdel
- Division of Physiology, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nima Movahedi
- Division of Physiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Role of Paraventricular Nucleus in Regulation of Feeding Behaviour and the Design of Intranuclear Neuronal Pathway Communications. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09928-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Carpéné C, Mauriège P, Boulet N, Biron S, Grolleau JL, Garcia-Barrado MJ, Iglesias-Osma MC. Methylamine Activates Glucose Uptake in Human Adipocytes Without Overpassing Action of Insulin or Stimulating its Secretion in Pancreatic Islets. MEDICINES 2019; 6:medicines6030089. [PMID: 31409018 PMCID: PMC6789716 DOI: 10.3390/medicines6030089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Background: Methylamine, a natural soluble amine present in foods, is known to be a substrate of primary amine oxidase (PrAO) widely expressed in animal tissues. Methylamine has been reported to activate glucose transport in fat cells and to facilitate glucose disposal in rabbits but the interests and limits of such insulin-mimicking actions have not been further explored. This work aimed to perform a preclinical study of the inter-individual variations of these biological properties to study the putative link between PrAO activity and insulin resistance. Methods: Methylamine was tested on human adipocyte preparations and in rabbit pancreatic islets to determine its influence on glucose uptake and insulin release, respectively. PrAO activity and related responses were determined in adipose tissues obtained from two cohorts of non-obese and obese women. Results: Adipose tissue PrAO activity was negatively correlated with insulin resistance in high-risk obese women. PrAO-dependent activation of glucose uptake was negatively correlated with body mass index and reflected the decrease of insulin responsiveness of human fat cells with increasing obesity. Methylamine exhibited antilipolytic properties in adipocytes but was unable to directly activate insulin secretion in isolated pancreatic islets. Conclusions: PrAO activation by its substrates, e.g., methylamine, increases glucose utilization in human adipocytes in a manner that is linked to insulin responsiveness. Methylamine/PrAO interaction can therefore contribute to adipose tissue enlargement but should be considered as potentially useful for diabetes prevention since it could limit lipotoxicity and facilitate glucose handling, at the expense of favoring healthy fat accumulation.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France.
| | - Pascale Mauriège
- Department of Kinesiology, Faculty of Medicine, Laval University, Québec, QC G1V0A6, Canada
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France
| | - Simon Biron
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V0A6, Canada
| | | | - Maria José Garcia-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Mari Carmen Iglesias-Osma
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY 1/NPY 2 receptors in broiler cockerels. Can J Physiol Pharmacol 2018; 96:1301-1307. [PMID: 30326197 DOI: 10.1139/cjpp-2018-0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Neuropeptide Y (NPY) plays a mediatory role in cerebral insulin function by maintaining energy balance. The current study was designed to determine the role of insulin in food intake and its interaction with NPY receptors in 8 experiments using broiler cockerels (4 treatment groups per experiment, except for experiment 8). Chicks received control solution or 2.5, 5, or 10 ng of insulin in experiment 1 and control solution or 1.25, 2.5, or 5 μg of receptor antagonists B5063, SF22, or SML0891 in experiments 2, 3, and 4 through intracerebroventricular (ICV) injection, respectively. In experiments 5, 6, and 7, chicks received ICV injection of B5063, SF22, SML0891, or co-injection of an antagonist + insulin, control solution, and insulin. In experiment 8, blood glucose was measured. Insulin, B5063, and SML0891 decreased food intake, while SF22 led to an increase in food intake. The hypophagic effect of insulin was also reinforced by injection of B560, but ICV injection of SF22 destroyed this hypophagic effect of insulin and increased food intake (p < 0.05). However, SML0891 had no effect on decreased food intake induced by insulin (p > 0.05). At 30 min postinjection, blood sugar in the control group was higher than that in the insulin group (p < 0.05). Therefore, the NPY1 and NPY2 receptors mediate the hypophagic effect of insulin in broiler cockerels.
Collapse
Affiliation(s)
- Shiba Yousefvand
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Hamidi
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Morteza Zendehdel
- b Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Parham
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 2017; 58:585-593. [PMID: 28728428 DOI: 10.1080/00071668.2017.1357799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.
Collapse
Affiliation(s)
- M Khodadadi
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - M Zendehdel
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - A Baghbanzadeh
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - V Babapour
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|