1
|
Hou S, Li Y, Fu Y. me53 encoded by Autographa californica multiple nucleopolyhedrovirus: from mechanism to function. Virus Genes 2023; 59:188-194. [PMID: 36229721 DOI: 10.1007/s11262-022-01943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
me53, a highly conserved immediate early gene in all Lepidoptera baculoviruses, has been of great interest in recent years. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. The me53 gene of AcMNPV has been sequenced, and it was transcribed late after infection. The structure of ME53 protein and its roles in the infection of host cells were summarized and discussed, including that (1) the production of Budding Virus (BV); (2) nucleocapsid formation in the host nuclei; (3) ME53 forms a lesion on the cell membrane of AcMNPV-infected cells and co-locates with GP64 and the primary capsid protein VP39; (4) the nuclear translocation signal sequence of ME53 is essential for optimal baculovirus production. In this review, we focus on the emerging roles of ME53 by discussing novel mechanisms identified to mediate or interact by ME53, which provides an important reference for the effective transformation, utilization and improvement of the anti-insect activity of AcMNPV.
Collapse
Affiliation(s)
- Shuoyu Hou
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
2
|
Chen T, Duan X, Hu H, Shang Y, Hu Y, Deng F, Wang H, Wang M, Hu Z. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol Sin 2021; 36:762-773. [PMID: 33683665 PMCID: PMC8379328 DOI: 10.1007/s12250-021-00355-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Baculoviruses have been widely used as a vector for expressing foreign genes. Among numerous baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most frequently used and it encodes 155 open reading frames (ORFs). Here, we systematically investigated the impact of 42 genes of AcMNPV on the production of infectious budded viruses (BVs) by constructing gene-knockout bacmids and subsequently conducting transfection and infection assays. The results showed that among the 39 functionally unverified genes and 3 recently reported genes, 36 are dispensable for infectious BV production, as the one-step growth curves of the gene-knockout viruses were not significantly different from those of the parental virus. Three genes (ac62, ac82 and ac106/107) are essential for infectious BV production, as deletions thereof resulted in complete loss of infectivity while the repaired viruses showed no significant difference in comparison to the parental virus. In addition, three genes (ac13, ac51 and ac120) are important but not essential for infectious BV production, as gene-knockout viruses produced significantly lower BV levels than that of the parental virus or repaired viruses. We then grouped the 155 AcMNPV genes into three categories (Dispensable, Essential, or Important for infectious BV production). Based on our results and previous publications, we constructed a schematic diagram of a potential mini-genome of AcMNPV, which contains only essential and important genes. The results shed light on our understanding of functional genomics of baculoviruses and provide fundamental information for future engineering of baculovirus expression system.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiaoyan Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yu Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
3
|
Bossert M, Carstens EB. Sequential deletion of AcMNPV homologous regions leads to reductions in budded virus production and late protein expression. Virus Res 2018; 256:125-133. [PMID: 30121325 DOI: 10.1016/j.virusres.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Homologous regions (hrs) have been predicted to act as origins of baculovirus DNA replication. Hrs have also been shown to function as enhancers of virus transcription. Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) carries eight hrs. In order to assess the role of hrs in virus replication in vivo, we applied a two-step RED recombination system for site-specific mutagenesis to sequentially delete each hr from a bacmid copy of AcMNPV. We then characterized the ability of the bacmids carrying different numbers of hrs or no hr to produce polyhedra and budded virus in transfected cells. We also investigated the ability of virus supernatants from transfected cells to produce budded virus and polyhedra when used to infect cells. We also characterized the expression of specific early and late virus proteins in transfected cells. The results demonstrated that removal of five hrs had little or no effect on virus infection but deleting all eight hrs compromised budded virus production and delayed early and late gene expression but did not completely eliminate assembly of infectious virus. We conclude that multiple hrs ensure an effective virus infection cycle with production of high titers of budded virus and polyhedra.
Collapse
Affiliation(s)
- Maike Bossert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3Y6, Canada
| | - Eric B Carstens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3Y6, Canada.
| |
Collapse
|
4
|
Hou D, Chen X, Zhang LK. Proteomic Analysis of Mamestra Brassicae Nucleopolyhedrovirus Progeny Virions from Two Different Hosts. PLoS One 2016; 11:e0153365. [PMID: 27058368 PMCID: PMC4825930 DOI: 10.1371/journal.pone.0153365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023] Open
Abstract
Mamestra brassicae nucleopolyhedrovirus (MabrNPV) has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication.
Collapse
Affiliation(s)
- Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, P. R. China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|
5
|
Shen H, Zhou Y, Zhang W, Nin B, Wang H, Wang X, Shao S, Chen H, Guo Z, Liu X, Yao Q, Chen K. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17. Cytotechnology 2012; 64:711-8. [PMID: 22476564 DOI: 10.1007/s10616-012-9451-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/03/2012] [Indexed: 11/28/2022] Open
Abstract
Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.
Collapse
Affiliation(s)
- Hongxing Shen
- School of Medical Science and Laborarory Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
BM61 of Bombyx mori nucleopolyhedrovirus: its involvement in the egress of nucleocapsids from the nucleus. FEBS Lett 2012; 586:990-5. [PMID: 22569252 DOI: 10.1016/j.febslet.2011.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/23/2011] [Indexed: 12/31/2022]
Abstract
All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm.
Collapse
|
7
|
Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J Virol 2011; 85:9696-707. [PMID: 21775466 DOI: 10.1128/jvi.00833-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
me53 is an immediate-early/late gene found in all lepidopteran baculoviruses sequenced to date. Deletion of me53 results in a greater-than-1,000-fold reduction in budded-virus production in tissue culture (J. de Jong, B. M. Arif, D. A. Theilmann, and P. J. Krell, J. Virol. 83:7440-7448, 2009). We investigated the localization of ME53 using an ME53 construct fused to green fluorescent protein (GFP). ME53:GFP adopted a primarily cytoplasmic distribution at early times postinfection and a primarily nuclear distribution at late times postinfection. Additionally, at late times ME53:GFP formed distinct foci at the cell periphery. These foci colocalized with the major envelope fusion protein GP64 and frequently with VP39 capsid protein, suggesting that these cell membrane regions may represent viral budding sites. Deletion of vp39 did not influence the distribution of ME53:GFP; however, deletion of gp64 abolished ME53:GFP foci at the cell periphery, implying an association between ME53 and GP64. Despite the association of ME53 and GP64, ME53 fractionated with the nucleocapsid only after budded-virus fractionation. Together these findings suggest that ME53 may be providing a scaffold that bridges the viral envelope and nucleocapsid.
Collapse
|
8
|
Wang XF, Zhang BQ, Xu HJ, Cui YJ, Xu YP, Zhang MJ, Han YS, Lee YS, Bao YY, Zhang CX. ODV-associated proteins of the Pieris rapae granulovirus. J Proteome Res 2011; 10:2817-27. [PMID: 21517121 DOI: 10.1021/pr2000804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses, NPV) and Betabaculovirus (granuloviruses, GV) are two main genera of the family Baculoviridae. The virion proteomes of Alphabaculovirus have been well studied; however, the Betabaculovirus virion compositions remain unclear. Pieris rapae granulovirus (PrGV) can kill larvae of P. rapae, a worldwide and important pest of mustard family crops. In this study, the occlusion-derived virus (ODV)-associated proteins of PrGV were identified using three mass spectrometry (MS) approaches. The MS analyses demonstrated that 47 proteins were present in PrGV-ODV. Of the 47 PrGV-ODV proteins, 33 have homologues identified previously in other baculovirus ODV/BVs, whereas 14 (P10, Pr21, Pr29, Pr35, Pr42, Pr54, P45/48, Pr83, Pr84, Pr89, Pr92, Pr111, Pr114 and FGF3) were newly identified ODV proteins. Seven of the 14 newly identified ODV proteins are specific to Betabaculovirus, including Pr35, Pr42, Pr54, Pr83, Pr84, Pr111 and Pr114. Furthermore, the data derived from these MS approaches were validated by immunoblotting analysis using antisera prepared from 11 randomly selected recombinant PrGV-ODV proteins (including 5 Betabaculovirus-unique proteins). Comparison analyses revealed the similar and different compositions between Betabaculovirus and Alphabaculovirus virions, which deepen our understanding of the baculovirus virion structure and provide helpful information on Betabaculovirus--host interaction studies.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Science, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Baculoviruses produce two progeny phenotypes during their replication cycles. The occlusion-derived virus (ODV) is responsible for initiating primary infection in the larval midgut, and the budded virus (BV) phenotype is responsible for the secondary infection. The proteomics of several baculovirus ODVs have been revealed, but so far, no extensive analysis of BV-associated proteins has been conducted. In this study, the protein composition of the BV of Autographa californica nucleopolyhedrovirus (AcMNPV), the type species of baculoviruses, was analyzed by various mass spectrometry (MS) techniques, including liquid chromatography-triple quadrupole linear ion trap (LC-Qtrap), liquid chromatography-quadrupole time of flight (LC-Q-TOF), and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). SDS-PAGE and MALDI-TOF analyses showed that the three most abundant proteins of the AcMNPV BV were GP64, VP39, and P6.9. A total of 34 viral proteins associated with the AcMNPV BV were identified by the indicated methods. Thirteen of these proteins, PP31, AC58/59, AC66, IAP-2, AC73, AC74, AC114, AC124, chitinase, polyhedron envelope protein (PEP), AC132, ODV-E18, and ODV-E56, were identified for the first time to be BV-associated proteins. Western blot analyses showed that ODV-E18 and ODV-E25, which were previously thought to be ODV-specific proteins, were also present in the envelop fraction of BV. In addition, 11 cellular proteins were found to be associated with the AcMNPV BV by both LC-Qtrap and LC-Q-TOF analyses. Interestingly, seven of these proteins were also identified in other enveloped viruses, suggesting that many enveloped viruses may commonly utilize certain conserved cellular pathways.
Collapse
|
10
|
Cohen DPA, Marek M, Davies BG, Vlak JM, van Oers MM. Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 2009. [DOI: 10.1007/s12250-009-3059-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
|
12
|
Abstract
In the present study, we studied the feasibility of deleting essential genes in insect cells by using bacmid and purifying recombinant bacmid in Escherichia coli DH10B cells. To disrupt the orf4 (open reading frame 4) gene of BmNPV [Bm (Bombyx mori) nuclear polyhedrosis virus], a transfer vector was constructed and co-transfected with BmNPV bacmid into Bm cells. Three passages of viruses were carried out in Bm cells, followed by one round of purification. Subsequently, bacmid DNA was extracted and transformed into competent DH10B cells. A colony harbouring only orf4-disrupted bacmid DNA was identified by PCR. A mixture of recombinant (white colonies) and non-recombinant (blue colonies) bacmids were also transformed into DH10B cells. PCR with M13 primers showed that the recombinant and non-recombinant bacmids were separated after transformation. The result confirmed that purification of recombinant viruses could be carried out simply by transformation and indicated that this method could be used to delete essential genes. Orf4-disrupted bacmid DNA was extracted and transfected into Bm cells. Viable viruses were produced, showing that orf4 was not an essential gene.
Collapse
|
13
|
Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a nonessential gene required for efficient budded-virus production. J Virol 2009; 83:7440-8. [PMID: 19457997 DOI: 10.1128/jvi.02390-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
me53 is a highly conserved baculovirus gene found in all lepidopteran baculoviruses that have been fully sequenced to date. The putative ME53 protein contains a zinc finger domain and has been previously described as a major early transcript. We generated an me53-null bacmid (AcDeltame53GFP), as well as a repair virus (AcRepME53:HA-GFP) carrying me53 with a C-terminal hemagglutinin (HA) tag, under the control of its native early and late promoter elements. Sf9 and BTI-Tn-5b1 cells transfected with AcDeltame53GFP resulted in a 3-log reduction in budded-virus (BV) production compared to both the parental Autographa californica multiple nucleopolyhedrosis virus and the repair bacmids, demonstrating that although me53 is not essential for replication, replication is compromised in its absence. Our data also suggest that me53 does not affect DNA replication. Cell fractionation showed that ME53 is found in both the nucleus and the cytoplasm as early as 6 h postinfection. Deletion of the early transcriptional start site resulted in a 10- to 360-fold reduction of BV yield; however, deletion of the late promoter (ATAAG) resulted in a 160- to 1,000-fold reduction, suggesting that, in the context of BV production, ME53 is required both early and late in the infection cycle. Additional Western blot analysis of purified virions from the repair virus revealed that ME53:HA is associated with both BV and occlusion-derived virions. Together, these results indicate that me53, although not essential for viral replication, is required for efficient BV production.
Collapse
|
14
|
Tang XD, Xiao Q, Ma XC, Zhu ZR, Zhang CX. Morphology and genome of Euproctis pseudoconspersa nucleopolyhedrovirus. Virus Genes 2009; 38:495-506. [PMID: 19347664 DOI: 10.1007/s11262-009-0355-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/19/2009] [Indexed: 11/26/2022]
Abstract
Euproctis pseudoconspersa NPV (EupsNPV) is pathogenic to the tea tussock (E. pseudoconspersa), one of the major pests of tea bushes in East Asia, and has been used to control the pest. Electron microscope observation showed there were two modes for the virions embedded in each polyhedron, single-nucleocapsid and double-nucleocapsid. The EupsNPV genome contained 141,291 bp and had a G + C content of 40.4%. Of 139 potential ORFs predicted from the sequence, 126 had a homology in other baculoviruses; 13 were unique to EupsNPV. Four homologous repeat sequences (hrs) were present in the EupsNPV genome and the repeat sequences were different between these hrs. Three ORFs were identified to contain two homologues in the EupsNPV genome, including bro, p26 and dbp. Gene parity plots, percent identities of gene homologues and phylogenetic analysis all suggested that EupsNPV is most closely related to EcobNPV in Group II NPV, although its genomic organization was highly distinct.
Collapse
Affiliation(s)
- Xu-Dong Tang
- Institute of Insect Science, Zhejiang University, 268 Kaixuan Road, Hangzhou, 310029, China
| | | | | | | | | |
Collapse
|
15
|
Characterization of Bombyx mori nucleopolyhedrovirus orf74, a novel gene involved in virulence of virus. Virus Genes 2009; 38:487-94. [DOI: 10.1007/s11262-009-0350-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
|