1
|
Peng X, Zhang W, Lei C, Min S, Hu J, Wang Q, Sun X. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). BMC Genomics 2022; 23:367. [PMID: 35562654 PMCID: PMC9107115 DOI: 10.1186/s12864-022-08604-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Baculoviruses act as effective biological control agents against the invasive pest Hyphantria cunea Drury. In this study, two Chinese Hyphantria cunea nucleopolyhedrovirus (HycuNPV) isolates, HycuNPV-BJ and HycuNPV-HB, were deep sequenced and compared with the Japanese isolate, HycuNPV-N9, to determine whole-genome level diversity and evolutionary history. Results The divergence of the phylogenetic tree and the K2P distances based on 38 core-gene concatenated alignment revealed that two Chinese HycuNPV isolates were a novel species of Alphabaculovirus that infected Hyphantria cunea in China. The gene contents indicated significant differences in the HycuNPV genomes between the Chinese and Japanese isolates. The differences included gene deletions, acquisitions and structural transversions, but the main difference was the high number of single nucleotide polymorphisms (SNPs). In total, 10,393 SNPs, corresponding to approximately 8% of the entire HycuNPV-N9 genome sequence, were detected in the aligned reads. By analyzing non-synonymous variants, we found that hotspot mutation-containing genes had mainly unknown functions and most were early expressing genes. We found that the hycu78 gene which had early and late promoter was under positive selection. Biological activity assays revealed that the infectivity of HycuNPV-HB was greater than that of HycuNPV-BJ, and the killing speed of HycuNPV-HB was faster than that of HycuNPV-BJ. A comparison of molecular genetic characteristics indicated that the virulence differences between the two isolates were affected by SNP and structural variants, especially the homologous repeat regions. Conclusions The genomes of the two Chinese HycuNPV isolates were characterized, they belonged to a novel species of Alphabaculovirus that infected Hyphantria cunea in China. We inferred that the loss or gain of genetic material in the HycuNPV-HB and HycuNPV-BJ genomes resulted in new important adaptive capabilities to the H. cunea host. These results extend the current understanding of the genetic diversity of HycuNPV and will be useful for improving the applicability of this virus as a biological control agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08604-7.
Collapse
Affiliation(s)
- Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenying Zhang
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Shuifa Min
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Qinghua Wang
- Institute of Forestry Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Haidian, Beijing, 100091, China.
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
2
|
Raghavendra AT, Jalali SK, Ojha R, Shivalingaswamy TM, Bhatnagar R. Whole genome sequence and comparative genomic sequence analysis of Helicoverpa armigera nucleopolyhedrovirus (HearNPV-L1) isolated from India. Virusdisease 2017; 28:61-68. [PMID: 28466057 DOI: 10.1007/s13337-016-0352-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
The whole genome of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from India, HearNPV-L1, was sequenced and analyzed, with a view to look for genes and/or nucleotide sequences that might be involved in the differences and virulence among other HearNPVs sequenced from other countries like SP1A (Spain), NNg1 (Kenya) and G4 (China). The entire nucleotide sequence of the HearNPV-L1 genome was 136,740 bp in length having GC content of 39.19% and contained 113 ORFs that could encode polypeptides with more than 50 amino acids (GenBank accession number KT013224). Two ORFs, viz., ORF 18 (300 bp) and ORF 19 (401 bp) identified were unique in HearNPV-L1 genome. Most of the HearNPV-L1 ORFs showed high similarity to NNg1, SP1A and G4 genomes. HearNPV-L1 genome contains 5 h (hr1-hr5), these regions were found 84-100% similar to hr region of NNg1, SP1A and G4 genomes. A total of four bro genes were observed in HearNPV-L1 genome, of which bro-a gene was 12 and 351 bp bigger than SP1A and G4 bro-a, respectively, while bro-b was 15 bp bigger SP1A and NNg1 bro-b, whereas 593 bp shorter than G4 bro-b, while bro-c was 12 bp shorter than NNg1, however bro-c was absent in G4 genome. HearNPV-L1 bro-d was 100% homologous to bro-d of SP1A, NNg1 and G4 genomes, respectively. The comparative analysis of HearNPV-L1 genome indicated that there are several other putative genes and nucleotide sequences that may be responsible for insecticidal activity in HearNPV-L1 isolate, however, further functional analysis of the hypothetical (putative) genes may help identifying the genes that are crucial for the virulence and insecticidal activity.
Collapse
Affiliation(s)
- Ashika T Raghavendra
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India.,Department of Biotechnology, Centre of Post Graduate Studies, Jain University, Jayanagar, Bangalore, Karnataka 560011 India
| | - Sushil K Jalali
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India
| | - Rakshit Ojha
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India.,Department of Biotechnology, Centre of Post Graduate Studies, Jain University, Jayanagar, Bangalore, Karnataka 560011 India
| | - Timalapur M Shivalingaswamy
- Division of Molecular Entomology, ICAR-National Bureau of AgriculturalInsect Resources, Post Bag No. 2491, H. A. Farm Post, Bellary Road, Hebbal, Bangalore, Karnataka 560024 India
| | - Raj Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
3
|
Ikeda M, Yamada H, Ito H, Kobayashi M. Baculovirus IAP1 induces caspase-dependent apoptosis in insect cells. J Gen Virol 2011; 92:2654-2663. [PMID: 21795471 DOI: 10.1099/vir.0.033332-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Baculoviruses encode inhibitors of apoptosis (IAPs), which are classified into five groups, IAP1-5, based on their sequence homology. Most of the baculovirus IAPs with anti-apoptotic functions belong to the IAP3 group, with certain exceptions. The functional roles of IAPs from other groups during virus infection have not been well established. We have previously shown that Hyphantria cunea multiple nucleopolyhedrovirus (HycuMNPV) encodes three iap genes, hycu-iap1, hycu-iap2 and hycu-iap3, and that only Hycu-IAP3 has anti-apoptotic activity against actinomycin D-induced apoptosis of Spodoptera frugiperda Sf9 cells. In the present study, we demonstrate that transient expression of Hycu-IAP1 is capable of inducing apoptosis and/or stimulating caspase-3-like protease activity in various lepidopteran and dipteran cell lines. Transient-expression assay analysis also demonstrates that not only Hycu-IAP1 but also IAP1s from Autographa californica MNPV, Bombyx mori NPV and Orgyia pseudotsugata MNPV (OpMNPV) are capable of inducing apoptosis, and that apoptosis induced by Hycu-IAP1 is precluded by the functional anti-apoptotic baculovirus protein Hycu-IAP3. In HycuMNPV-infected Spilosoma imparilis (SpIm) cells and OpMNPV-infected Ld652Y cells, caspase-3-like protease activity is markedly stimulated during the late stages of infection, and the caspase-3-like protease activity stimulated in HycuMNPV-infected SpIm cells is repressed by RNA interference-mediated silencing of hycu-iap1. In addition, initiator caspase Bm-Dronc, the B. mori homologue of Dronc, is cleaved upon transfection of BM-N cells with a plasmid expressing Hycu-IAP1. These results provide the first evidence that baculovirus IAP1s act to induce caspase-dependent apoptosis, possibly by replacing the cellular IAP1 that prevents Dronc activation.
Collapse
Affiliation(s)
- Motoko Ikeda
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hayato Yamada
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hiroyuki Ito
- Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michihiro Kobayashi
- Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Nagai S, Alves CAF, Kobayashi M, Ikeda M. Comparative transient expression assay analysis of hycu-hr6- and IE1-dependent regulation of baculovirus gp64 early promoters in three insect cell lines. Virus Res 2010; 155:83-90. [PMID: 20837073 DOI: 10.1016/j.virusres.2010.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/28/2010] [Accepted: 08/28/2010] [Indexed: 11/24/2022]
Abstract
We previously demonstrated that the Hyphantria cunea multicapsid nucleopolyhedrovirus (HycuMNPV) gp64 gene (hycu-gp64) is uniquely localized on the viral genome with a large homologous region of 1582bp, hycu-hr6, immediately upstream of the hycu-gp64 gene. In the present study, we compared the regulation of gp64 early promoters from HycuMNPV, Autographa californica multicapsid NPV (AcMNPV) and Bombyx mori NPV (BmNPV) by cis-acting hycu-hr6 and trans-acting IE1s in three cell lines (Spodoptera frugiperda Sf9, Bombyx mori BM-N and Spilosoma imparilis SpIm). A transient expression assay with plasmids harboring a reporter luciferase gene demonstrated that the gp64 early promoters are positively regulated by hycu-hr6, independent of virus and cell types. In contrast, gp64 early promoters were regulated positively or negatively by trans-acting IE1s, in a cell- and virus-type dependent manner, indicating that cellular factors, as well as viral factors, are responsible for IE1-dependent regulation of gp64 early promoters. However, hycu-gp64 early promoter activity was consistently suppressed by HycuMNPV IE1 (Hycu-IE1), irrespective of the cell lines used. Analysis of the hycu-gp64 early promoter region revealed two novel sequence elements that were involved in Hycu-IE1-dependent negative regulation of the hycu-gp64 early promoter. These two novel regulatory sequence elements could compensate for each other but could not be substituted with AcMNPV IE1 binding motif (Ac-IBM). These results suggest that IE1 regulates gp64 early promoters to produce the proper amount of GP64 protein, depending upon NPV-insect cell systems.
Collapse
Affiliation(s)
- Setsuko Nagai
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|