1
|
Zhai X, Wang N, Jiao H, Zhang J, Li C, Ren W, Reiter RJ, Su S. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. J Pineal Res 2021; 71:e12754. [PMID: 34139040 DOI: 10.1111/jpi.12754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In the absence of effective treatments, they have led to significant economic losses in the swine industry worldwide. We reported that indoles exerted potent activity against swine coronaviruses, the molecules used included melatonin, indole, tryptamine, and L-tryptophan. Herein, we did further systematic studies with melatonin, a ubiquitous and versatile molecule, and found it inhibited TGEV, PEDV, and PDCoV infection in PK-15, Vero, or LLC-PK1 cells by reducing viral entry and replication, respectively. Collectively, we provide the molecular basis for the development of new treatments based on the ability of indoles to control TGEV, PEDV, and PDCoV infection and spread.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Houqi Jiao
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Chaofan Li
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Shuo Su
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Yang WT, Li QY, Ata EB, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, Kang YH, Liu J, Yang GL, Wang CF. Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus. Appl Microbiol Biotechnol 2018; 102:8307-8318. [PMID: 30056514 PMCID: PMC7080198 DOI: 10.1007/s00253-018-9238-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022]
Abstract
The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qiong-Yan Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
3
|
Lőrincz M, Biksi I, Andersson S, Cságola A, Tuboly T. Sporadic re-emergence of enzootic porcine transmissible gastroenteritis in Hungary. Acta Vet Hung 2014; 62:125-33. [PMID: 23974941 DOI: 10.1556/avet.2013.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transmissible gastroenteritis (TGE) is a coronavirus-induced disease of pigs, characterised by diarrhoea and vomiting. The incidence of the disease had been decreasing since the late 1980s when deletion mutant variants (porcine respiratory coronavirus, PRCoV) of the virus emerged, repressing TGE gradually. Although disease manifestations are infrequent, the virus is still present in pig herds, causing sporadic outbreaks in a milder form. Identification and characterisation of the spike genes from TGEV and PRCoV, detected in such outbreaks, were performed in Hungary. Analysis of the amplified partial gene sequences showed that TGEV was present in herds with TGE clinical signs together with PRCoV. The sequences, apart from the deletions in PRCoV, were identical and at least two types of PRCoV spike proteins could be identified based on the length of the deleted sequence.
Collapse
Affiliation(s)
- Márta Lőrincz
- 1 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science Hungária krt. 23-25 H-1143 Budapest Hungary
| | - Imre Biksi
- 2 Szent István University Large Animal Clinic, Faculty of Veterinary Science Dóra major Üllő Hungary
| | - Simon Andersson
- 1 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science Hungária krt. 23-25 H-1143 Budapest Hungary
| | - Attila Cságola
- 1 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science Hungária krt. 23-25 H-1143 Budapest Hungary
| | - Tamás Tuboly
- 1 Szent István University Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science Hungária krt. 23-25 H-1143 Budapest Hungary
| |
Collapse
|
4
|
Chen J, Liu X, Shi D, Shi H, Zhang X, Li C, Chi Y, Feng L. Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses 2013; 5:2601-13. [PMID: 24153062 PMCID: PMC3814607 DOI: 10.3390/v5102601] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/05/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
Since late 2010, porcine epidemic diarrhea virus (PEDV) has rapidly disseminated all over the China and caused considerable morbidity and high mortality (up to 100%) in neonatal piglets. 79.66% (141 of 177) pig farms in 29 provinces (excluding Tibet and Hainan, China) and 72.27% (417 of 577) samples were positive for PEDV confirmed by reverse transcription-polymerase chain reaction (RT-PCR). The full-length S genes of representative field strains were sequenced. 33 field strains share 93.5%-99.9% homologies with each other at the nucleotide sequence level and 92.3%-99.8% homologies with each other at the amino acids sequence level. Most field strains have nucleotide deletion and insertion regions, and show lower homologies (93.5%-94.2%) with Chinese classical strain CH/S, however higher homologies (97.1%-99.3%) with recent strain CHGD-1. The phylogenetic analysis showed there are classical strains and variants prevailing in pig herd in China. PEDV has a high detection rate in pig herds in China. Sequence analysis indicated the S genes of recent field strains have heterogeneity and the variants are predominant.
Collapse
Affiliation(s)
- Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li P, Ren X. Reverse transcription loop-mediated isothermal amplification for rapid detection of transmissible gastroenteritis virus. Curr Microbiol 2010; 62:1074-80. [PMID: 21127872 PMCID: PMC7080135 DOI: 10.1007/s00284-010-9825-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is the causative agent of porcine transmissible gastroenteritis, and sensitive detection methods are required for preventing the disease. In this article, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was developed to detect TGEV. Three pairs of primers targeting the nucleocapsid (N) gene of TGEV were synthesized and used in the RT-LAMP. The optimization, sensitivity, and specificity of the RT-LAMP were evaluated. Our results showed that the RT-LAMP amplified the N gene with high specificity, efficiency, and rapidity at isothermal condition. The optimal reaction condition was achieved at 60°C for 30 min. The RT-LAMP assay was more sensitive than gel-based RT-PCR and PCR. It had a higher sensitivity than enzyme-linked immunosorbent assay (ELISA) using the equal virus templates. In addition, the established RT-LAMP differentiated TGEV from porcine epidemic diarrhea virus, porcine rotavirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus, and avian infectious bronchitis virus. The approach is suitable for detecting TGEV for field diagnostics or in less-equipped laboratories due to its convenience and simplicity.
Collapse
Affiliation(s)
- Pengchong Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang, 150030, Harbin, China
| | | |
Collapse
|