1
|
Hu Z, Zhang Y, Wang Z, Wang J, Tong Q, Wang M, Sun H, Pu J, Liu C, Liu J, Sun Y. Mouse-adapted H9N2 avian influenza virus causes systemic infection in mice. Virol J 2019; 16:135. [PMID: 31718675 PMCID: PMC6852949 DOI: 10.1186/s12985-019-1227-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND H9N2 influenza viruses continuously circulate in multiple avian species and are repeatedly transmitted to humans, posing a significant threat to public health. To investigate the adaptation ability of H9N2 avian influenza viruses (AIVs) to mammals and the mutations related to the host switch events, we serially passaged in mice two H9N2 viruses of different HA lineages - A/Quail/Hong Kong/G1/97 (G1) of the G1-like lineage and A/chicken/Shandong/ZB/2007 (ZB) of the BJ/94-like lineage -and generated two mouse-adapted H9N2 viruses (G1-MA and ZB-MA) that possessed significantly higher virulence than the wide-type viruses. FINDING ZB-MA replicated systemically in mice. Genomic sequence alignment revealed 10 amino acid mutations coded by 4 different gene segments (PB2, PA, HA, and M) in G1-MA compared with the G1 virus and 23 amino acid mutations in 5 gene segments (PB1, PA, HA, M, and NS) in ZB-MA compared to ZB virus, indicating that the mutations in the polymerase, HA, M, and NS genes play critical roles in the adaptation of H9N2 AIVs to mammals, especially, the mutations of M1-Q198H and M1-A239T were shared in G1-MA and ZB-MA viruses. Additionally, several substitutions showed a higher frequency in human influenza viruses compared with avian viruses. CONCLUSIONS Different lineages of H9N2 could adapt well in mice and some viruses could gain the ability to replicate systemically and become neurovirulent. Thus, it is essential to pay attention to the mammalian adaptive evolution of the H9N2 virus.
Collapse
Affiliation(s)
- Zhe Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yiran Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Zhen Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingjing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Changqing Liu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Jiao H, Du L, Hao Y, Cheng Y, Luo J, Kuang W, Zhang D, Lei M, Jia X, Zhang X, Qi C, He H, Wang F. Effective inhibition of mRNA accumulation and protein expression of H5N1 avian influenza virus NS1 gene in vitro by small interfering RNAs. Folia Microbiol (Praha) 2013; 58:335-42. [PMID: 23192525 DOI: 10.1007/s12223-012-0212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Avian influenza has emerged as a devastating disease and may cross species barrier and adapt to a new host, causing enormous economic loss and great public health threats, and non-structural protein 1 (NS1) is a multifunctional non-structural protein of avian influenza virus (AIV) that counters cellular antiviral activities and is a virulence factor. RNA interference (RNAi) provides a powerful promising approach to inhibit viral infection specifically. To explore the possibility of using RNAi as a strategy against AIV infection, after the fusion protein expression plasmids pNS1-enhanced green fluorescent protein (EGFP), which contain the EGFP reporter gene and AIV NS1 as silencing target, were constructed and NS1-EGFP fusion protein expressing HEK293 cell lines were established, four small interfering RNAs (siRNAs) targeting NS1 gene were designed, synthesized, and used to transfect the stable cell lines. Flow cytometry, real-time quantitative polymerase chain reaction, and Western blot were performed to assess the expression level of NS1. The results suggested that sequence-dependent specific siRNAs effectively inhibited mRNA accumulation and protein expression of AIV NS1 in vitro. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for AIV infection.
Collapse
Affiliation(s)
- Hanwei Jiao
- College of Agriculture, Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Laboratory of Haikou, Hainan University, Haidian Island, Haikou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One 2012; 7:e40752. [PMID: 22808250 PMCID: PMC3393695 DOI: 10.1371/journal.pone.0040752] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
H9N2 influenza viruses have been circulating worldwide in multiple avian species and have repeatedly infected humans to cause typical disease. The continued avian-to-human interspecies transmission of H9N2 viruses raises concerns about the possibility of viral adaption with increased virulence for humans. To investigate the genetic basis of H9N2 influenza virus host range and pathogenicity in mammals, we generated a mouse-adapted H9N2 virus (SD16-MA) that possessed significantly higher virulence than wide-type virus (SD16). Increased virulence was detectable after 8 sequential lung passages in mice. Five amino acid substitutions were found in the genome of SD16-MA compared with SD16 virus: PB2 (M147L, V250G and E627K), HA (L226Q) and M1 (R210K). Assessments of replication in mice showed that all of the SD16-MA PB2, HA and M1 genome segments increased virus replication; however, only the mouse-adapted PB2 significantly increased virulence. Although the PB2 E627K amino acid substitution enhanced viral polymerase activity and replication, none of the single mutations of mouse adapted PB2 could confer increased virulence on the SD16 backbone. The combination of M147L and E627K significantly enhanced viral replication ability and virulence in mice. Thus, our results show that the combination of PB2 amino acids at position 147 and 627 is critical for the increased pathogenicity of H9N2 influenza virus in mammalian host.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanyuan Tan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Earl G. Brown
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Emerging Pathogens Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- The Shandong Animal Disease Control Center, Jinan, China
- * E-mail:
| |
Collapse
|
5
|
High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci U S A 2011; 108:4164-9. [PMID: 21368167 DOI: 10.1073/pnas.1019109108] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin.
Collapse
|