1
|
Pu F, Wang R, Yang X, Hu X, Wang J, Zhang L, Zhao Y, Zhang D, Liu Z, Liu J. Nucleotide and codon usage biases involved in the evolution of African swine fever virus: A comparative genomics analysis. J Basic Microbiol 2023; 63:499-518. [PMID: 36782108 DOI: 10.1002/jobm.202200624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Since African swine fever virus (ASFV) replication is closely related to its host's machinery, codon usage of viral genome can be subject to selection pressures. A better understanding of codon usage can give new insights into viral evolution. We implemented information entropy and revealed that the nucleotide usage pattern of ASFV is significantly associated with viral isolation factors (region and time), especially the usages of thymine and cytosine. Despite the domination of adenine and thymine in the viral genome, we found that mutation pressure alters the overall codon usage pattern of ASFV, followed by selective forces from natural selection. Moreover, the nucleotide skew index at the gene level indicates that nucleotide usages influencing synonymous codon bias of ASFV are significantly correlated with viral protein hydropathy. Finally, evolutionary plasticity is proved to contribute to the weakness in synonymous codons with A- or T-end serving as optimal codons of ASFV, suggesting that fine-tuning translation selection plays a role in synonymous codon usages of ASFV for adapting host. Taken together, ASFV is subject to evolutionary dynamics on nucleotide selections and synonymous codon usage, and our detailed analysis offers deeper insights into the genetic characteristics of this newly emerging virus around the world.
Collapse
Affiliation(s)
- Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Xuanye Yang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Lijuan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongqing Zhao
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zewen Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junlin Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Jia R, Zhang G, Bai Y, Liu H, Chen Y, Ding P, Zhou J, Feng H, Li M, Tian Y, Wang A. Identification of Linear B Cell Epitopes on CD2V Protein of African Swine Fever Virus by Monoclonal Antibodies. Microbiol Spectr 2022; 10:e0105221. [PMID: 35311572 PMCID: PMC9045250 DOI: 10.1128/spectrum.01052-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
The CD2-like (CD2V) protein is a crucial antigen of African swine fever virus (ASFV). CD2V interacts with the cellular AP-1 protein, participates in intracellular transport of virus, and induces neutralizing antibodies to partly protect swine from virus attack. In this study, a specific CD2V dimeric protein was designed to enhance antigenicity and immunogenicity, expressed in a Bac-to-Bac baculovirus expression vector system and purified by Ni-affinity chromatography. After animal immunization, five monoclonal antibodies (mAbs) (7E12, 22B3, 18A3, 13G11, and 43C2) against CD2V were developed. The variable regions of heavy chains and light chains of the mAbs were sequenced to prove that the five mAbs differed from one another. The mAbs of CD2V could combine with ASFV by immunoperoxidase monolayer assay (IPMA). B cell epitopes of CD2V were screened using the five mAbs by indirect enzyme-linked immunosorbent assay (ELISA) and Dot-ELISA. Therefore, three B cell epitopes (147FVKYT151, 157EYNWN161, and 195SSNY198) were identified. This is the first time that mAbs of the ASFV CD2V protein have been developed and the sequencing of heavy chains and light chains of mAbs has been completed. Linear B cell epitopes, which were core targets of immunoprotection of the CD2V protein, were identified by mAbs for the first time. This study provides efficient epitopes for the development of ASFV subunit vaccines. IMPORTANCE The ASFV CD2V protein is a crucial antigen on the outer envelopes of virus particles. A modified ASFV CD2V dimeric protein was expressed in the Bac-to-Bac baculovirus expression vector system. Five monoclonal antibodies (mAbs) against CD2V were developed, sequenced, and applied to identify CD2V protein B cell epitopes. Three B cell epitopes, 147FVKYT151, 157EYNWN161, and 195SSNY198, were identified. This is the first time CD2V mAbs have been developed, the sequencing of heavy chains and light chains of CD2V mAbs have been completed, and CD2V B cell epitopes have been identified by using scanning peptide method and bioinformatics methods.
Collapse
Affiliation(s)
- Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Peking University, Beijing, China
- Longhu Modern Immunity Labrotary, Zhengzhou, Henan, China
| | - Yilin Bai
- Northwest Agriculture Forestry University, Yanglin, Shanxi, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Feng
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Mingyang Li
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| |
Collapse
|
3
|
An extensive evaluation of codon usage pattern and bias of structural proteins p30, p54 and, p72 of the African swine fever virus (ASFV). Virusdisease 2021; 32:810-822. [PMID: 34901328 DOI: 10.1007/s13337-021-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
African swine fever virus (ASFV) belongs to the family of Asfarviridae to the genus Asfivirus. ASF virus causes hemorrhage illness with a high mortality rate and hence, commercial loss in the swine community. The ASFV has been categorized by variation in codon usage that is caused by high mutation rates and natural selection. The evolution is caused mainly due to the mutation pressure and regulating the protein gene expression. Based on publicly accessible nucleotide sequences of the ASFV and its host (pig & tick), codon usage bias analysis was performed since an approved effective vaccination is not available to date, it is very important to analyze the codon usage bias of the p30, p54, and p72 proteins of ASFV to produce an effective and efficient vaccine to control the disease. Even though the codon usage bias analyses have been evaluated earlier, the evaluation of the codon usage pattern specific to p30, p54, and p72 of ASFV is inadequate. In all the protein-coding sequences, nucleotide base and codons terminating with base T were most frequent and the mean effective number of codons (Nc) was high, indicating the presence of codon usage bias. The GC contents and dinucleotide frequencies also indicated the codon usage bias of the ASFV pig and tick. The Nc plot, parity plot, neutrality plot analysis, revealed natural selection, as well as mutation pressure, were the major constraints in altering the codon bias of ASF virus. codon usage bias analysis was performed with no substantial differences in codon usage of the ASFV in pig and tick. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00719-x.
Collapse
|
4
|
Ma XX, Ma P, Chang QY, Liu ZB, Zhang D, Zhou XK, Ma ZR, Cao X. Adaptation ofBorrelia burgdorferito its natural hosts by synonymous codon and amino acid usage. J Basic Microbiol 2018. [DOI: 10.1002/jobm.201700652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao-Xia Ma
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Peng Ma
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Qiu-Yan Chang
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Zhen-Bin Liu
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Derong Zhang
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Xiao-Kai Zhou
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Zhong-Ren Ma
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| | - Xin Cao
- Engineering and Technology Research Center for Animal Cell, Gansu; College of Life Science and Engineering; Northwest Minzu University; Gansu P.R. China
| |
Collapse
|
5
|
Karniychuk UU. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains. Virus Res 2016; 223:73-9. [PMID: 27364082 DOI: 10.1016/j.virusres.2016.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/09/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies.
Collapse
Affiliation(s)
- Uladzimir U Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
6
|
Zhou JH, Ding YZ, He Y, Chu YF, Zhao P, Ma LY, Wang XJ, Li XR, Liu YS. The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS One 2014; 9:e108949. [PMID: 25350396 PMCID: PMC4211681 DOI: 10.1371/journal.pone.0108949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma bovis is a major pathogen causing arthritis, respiratory disease and mastitis in cattle. A better understanding of its genetic features and evolution might represent evidences of surviving host environments. In this study, multiple factors influencing synonymous codon usage patterns in M. bovis (three strains’ genomes) were analyzed. The overall nucleotide content of genes in the M. bovis genome is AT-rich. Although the G and C contents at the third codon position of genes in the leading strand differ from those in the lagging strand (p<0.05), the 59 synonymous codon usage patterns of genes in the leading strand are highly similar to those in the lagging strand. The over-represented codons and the under-represented codons were identified. A comparison of the synonymous codon usage pattern of M. bovis and cattle (susceptible host) indicated the independent formation of synonymous codon usage of M. bovis. Principal component analysis revealed that (i) strand-specific mutational bias fails to affect the synonymous codon usage pattern in the leading and lagging strands, (ii) mutation pressure from nucleotide content plays a role in shaping the overall codon usage, and (iii) the major trend of synonymous codon usage has a significant correlation with the gene expression level that is estimated by the codon adaptation index. The plot of the effective number of codons against the G+C content at the third codon position also reveals that mutation pressure undoubtedly contributes to the synonymous codon usage pattern of M. bovis. Additionally, the formation of the overall codon usage is determined by certain evolutionary selections for gene function classification (30S protein, 50S protein, transposase, membrane protein, and lipoprotein) and translation elongation region of genes in M. bovis. The information could be helpful in further investigations of evolutionary mechanisms of the Mycoplasma family and heterologous expression of its functionally important proteins.
Collapse
Affiliation(s)
- Jian-hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Yao-zhong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Ying He
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Yue-feng Chu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Ping Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Li-ya Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xin-jun Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xue-rui Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
- * E-mail: (XRL); (YSL)
| | - Yong-sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
- * E-mail: (XRL); (YSL)
| |
Collapse
|
7
|
Codon usage bias of the phosphoprotein gene of spring viraemia of carp virus and high codon adaptation to the host. Arch Virol 2014; 159:1841-7. [PMID: 24519460 DOI: 10.1007/s00705-014-2000-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/05/2013] [Indexed: 10/25/2022]
Abstract
In this study, we calculated the relative synonymous codon usage (RSCU) value and the effective number of codons (ENC) value to carry out principal component analysis (PCA) and correlation analysis of the codon usage pattern of the phosphoprotein gene (P gene) of spring viraemia of carp virus (SVCV). The synonymous codon usage pattern in P genes is geography-specific, based on PCA analysis. The high correlation between (G + C)1,2 % and (G + C)3 % suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage and base components in P genes. At least 40 out of 59 synonymous codons are similarly selected in all functional genes within five complete SVCV genomes, and the hosts based on the RSCU data. These results not only provide insight into variations in the codon usage pattern of SVCV but also may help in understanding the processes governing the evolution of SVCV.
Collapse
|
8
|
A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:406342. [PMID: 24199191 PMCID: PMC3808105 DOI: 10.1155/2013/406342] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/30/2013] [Accepted: 08/04/2013] [Indexed: 11/17/2022]
Abstract
Codon usage bias patterns have been broadly explored for many viruses. However, the relative importance of mutation pressure and natural selection is still under debate. In the present study, I tried to resolve controversial issues on determining the principal factors of codon usage patterns for DNA and RNA viruses, respectively, by examining over 38000 ORFs. By utilizing variation partitioning technique, the results showed that 27% and 21% of total variation could be attributed to mutational pressure, while 5% and 6% of total variation could be explained by natural selection for DNA and RNA viruses, respectively, in codon usage patterns. Furthermore, the combined effect of mutational pressure and natural selection on influencing codon usage patterns of viruses is substantial (explaining 10% and 8% of total variation of codon usage patterns). With respect to GC variation, GC content is always negatively and significantly correlated with aromaticity. Interestingly, the signs for the significant correlations between GC, gene lengths, and hydrophobicity are completely opposite between DNA and RNA viruses, being positive for DNA viruses while being negative for RNA viruses. At last, GC12 versus G3s plot suggests that natural selection is more important than mutational pressure on influencing the GC content in the first and second codon positions.
Collapse
|