1
|
Kaikkolante N, Katneni VK, Palliyath GK, Jangam AK, Syamadayal J, Krishnan K, Prabhudas SK, Shekhar MS. Computational insights into host-pathogen protein interactions: unveiling penaeid shrimp and white spot syndrome virus interplay. Mol Genet Genomics 2025; 300:35. [PMID: 40126686 DOI: 10.1007/s00438-025-02242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
White spot syndrome virus (WSSV) has been a major threat in shrimp farming system especially for penaeid shrimps. The lack of effective control measures for WSSV makes this disease a significant threat to aquaculture. This study seeks to explore the mechanisms of WSSV infection and its impact on shrimp by examining host-pathogen interactions (HPI) through in silico approach, which can offer valuable insights into the processes of infection and disease progression. The investigation focused on five Penaeus species, including Penaeus vannamei, Penaeus chinensis, Penaeus monodon, Penaeus japonicus, and Penaeus indicus, studying their interaction with the WSSV. This study employed orthology-based and domain-driven analyses to reveal protein-protein interactions (PPIs) between the host and the pathogen. The combined strategies were found to be effective in detecting shared molecular mechanisms in pathogenesis, unveiling intricate PPI networks critical for virulence and host response. Most interacting proteins in WSSV are immediate early proteins involved in DNA replication and proliferation, and are crucial for ubiquitination, transcription regulation, and nucleotide metabolism. A large number of host proteins interact with WSSV across species (2360-11,704 interactions), with P. chinensis (11,704) and P. japonicus (11,458) exhibiting the highest counts, suggesting greater susceptibility or response. Host hub proteins are crucial in signaling, cellular processes, and metabolism, interacting across the cytoplasm, nucleus, and membrane, highlighting their role in WSSV pathogenesis. This study provides essential insights into host-pathogen interactions, offering a foundation for future research aimed at improving WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Nimisha Kaikkolante
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Vinaya Kumar Katneni
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India.
| | - Gangaraj Karyath Palliyath
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Ashok Kumar Jangam
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Jagabattulla Syamadayal
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Karthic Krishnan
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Sudheesh Kommu Prabhudas
- Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Mudagandur Shashi Shekhar
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Tamil Nadu, Chennai, India
| |
Collapse
|
2
|
Eliseikina MG, Boyko AV, Shamshurina EV, Ryazanova TV. Complete genome of the new bacilliform virus that causes Milky Hemolymph Syndrome in Chionoecetes bairdi (Rathbun, 1924). J Invertebr Pathol 2024; 206:108179. [PMID: 39154988 DOI: 10.1016/j.jip.2024.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The genome of a new member of the Nimaviridae family has been sequenced. The Chionoecetes bairdi bacilliform virus (CbBV) causes Milky Hemolymph Syndrome (MHS) in Chionoecetes bairdi populations of the Pacific coast of Kamchatka. The CbBV genome is represented by double-stranded DNA with a length of 245,567 nucleotides containing 120 ORFs. Of these, 85 proteins had significant matches in the NCBI database, and 57 genes encoded capsid, envelope, tegument and nonstructural proteins. Comparative analysis of the genomes of CbBV and a number of representatives of the class nuclear arthropod large DNA viruses (NALDVs) made it possible to isolate 49 evolutionarily conserved orthologue core genes. Among them, 5 were multicopy genes, and 44 were single-copy genes. There were ancestral genes characteristic of all Naldaviricetes - per os infectivity complex genes, one DNA polymerase gene and one thymidylate synthase gene. Phylogenetic analysis of representatives of the Nimaviridae family revealed that the CbBV and Chionoecetes opilio bacilliform virus (CoBV) form an independent clade within the family separate from the clade containing WSSV strains. This is supported by data on the order and arrangement of genes in the genomes of nimaviruses that were identical within each clade but differed between them. In addition, a high identity of the genomes and proteomes of CbBV and CoBV (approximately 99%) was shown, and their identity with WSSV strains was no more than 33%. The data on the structure of the genome of the new virus that causes MHS in C. bairdi indicate that it belongs to the family Nimaviridae, genus Whispovirus. Thus, the CbBV infecting the commercially important species of Tanner crab in populations of the Pacific coast of Kamchatka is the second "wild" representative of replicating nimaviruses whose genome has been characterized after the CoBV that causes MHS in C. opilio in populations of the Sea of Japan. The discovery of a new member of the family that infects decapods indicates the prevalence of nimaviruses in marine ecosystems. The information obtained is important for understanding the evolution of representatives of the class of nuclear arthropod large DNA viruses. The discovery of a new nimavirus that causes MHS in Chionoecetes crabs, in contrast to the white spot syndrome (WSS) caused by WSSV strains, makes it relevant to identify two variants and possibly species within the family, namely, WSSV and Milky Hemolymph Syndrome virus (MHSV).
Collapse
Affiliation(s)
- M G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia.
| | - A V Boyko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia
| | - E V Shamshurina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, Vladivostok 690041, Russia
| | - T V Ryazanova
- Kamchatka Filiation of Russian Federal Research Institute of Fisheries and Oceanography, St. Naberezhnaya 18, Petropavlovsk-Kamchatsky 683000, Russia
| |
Collapse
|
3
|
Chauhan RP, Fogel R, Limson J. Nanopore MinION Sequencing Generates a White Spot Syndrome Virus Genome from a Pooled Cloacal Swab Sample of Domestic Chickens in South Africa. Microorganisms 2023; 11:2802. [PMID: 38004813 PMCID: PMC10672864 DOI: 10.3390/microorganisms11112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
White spot syndrome virus is a highly contagious pathogen affecting shrimp farming worldwide. The host range of this virus is primarily limited to crustaceans, such as shrimps, crabs, prawns, crayfish, and lobsters; however, several species of non-crustaceans, including aquatic insects, piscivorous birds, and molluscs may serve as the vectors for ecological dissemination. The present study was aimed at studying the faecal virome of domestic chickens (Gallus gallus domesticus) in Makhanda, Eastern Cape, South Africa. The cloacal swab specimens (n = 35) were collected from domestic chickens in December 2022. The cloacal swab specimens were pooled-each pool containing five cloacal swabs-for metagenomic analysis using a sequence-independent single-primer amplification protocol, followed by Nanopore MinION sequencing. While the metagenomic sequencing generated several contigs aligning with reference genomes of animal viruses, one striking observation was the presence of a White spot syndrome virus genome in one pool of cloacal swab specimens. The generated White spot syndrome virus genome was 273,795 bp in size with 88.5% genome coverage and shared 99.94% nucleotide sequence identity with a reference genome reported in China during 2018 (GenBank accession: NC_003225.3). The Neighbour-Joining tree grouped South African White spot syndrome virus genome with other White spot syndrome virus genomes reported from South East Asia. To our knowledge, this is the first report of a White spot syndrome virus genome generated from domestic chickens. The significance of White spot syndrome virus infection in domestic chickens is yet to be determined.
Collapse
Affiliation(s)
| | | | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa; (R.P.C.); (R.F.)
| |
Collapse
|
4
|
Ke F, Zhang QY. Advances on genomes studies of large DNA viruses in aquaculture: A minireview. Genomics 2023; 115:110720. [PMID: 37757975 DOI: 10.1016/j.ygeno.2023.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Cox N, De Swaef E, Corteel M, Van Den Broeck W, Bossier P, Dantas-Lima JJ, Nauwynck HJ. The Way of Water: Unravelling White Spot Syndrome Virus (WSSV) Transmission Dynamics in Litopenaeus vannamei Shrimp. Viruses 2023; 15:1824. [PMID: 37766231 PMCID: PMC10534367 DOI: 10.3390/v15091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
White spot disease (WSD) is a severe viral threat to the global shrimp aquaculture industry. However, little is known about white spot syndrome virus (WSSV) transmission dynamics. Our aim was to elucidate this in Litopenaeus vannamei using peroral in vivo WSSV challenge experiments. We demonstrated that WSD progression was rapid and irreversible, leading to death within 78 h. Viral DNA shedding was detected within 6 h of disease onset. This shedding intensified over time, reaching a peak within 12 h of the time of death. Isolating shrimp (clinically healthy and diseased) from infected populations at different time points post-inoculation showed that host-to-host WSSV transmission was occurring around the time of death. Exposing sentinels to environmental components (i.e., water, feces, molts) collected from tanks housing WSSV-infected shrimp resulted in a significantly (p-value < 0.05) increased infection risk after exposure to water (1.0) compared to the risk of infection after exposure to feces (0.2) or molts (0.0). Furthermore, ingestion of WSSV-infected tissues (cannibalism) did not cause a significantly higher number of WSD cases compared to immersion in water in which the same degree of cannibalism had taken place.
Collapse
Affiliation(s)
- Natasja Cox
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Mathias Corteel
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | | | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| |
Collapse
|
6
|
Krishnan K, Katneni VK, Prabhudas SK, Kaikkolante N, Jangam AK, Katneni UK, Hauton C, Peruzza L, Mudagandur SS, Koyadan VK, Poochirian JK, Jena J. MRF: a tool to overcome the barrier of inconsistent genome annotations and perform comparative genomics studies for the largest animal DNA virus. Virol J 2023; 20:72. [PMID: 37072853 PMCID: PMC10111743 DOI: 10.1186/s12985-023-02035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The genome of the largest known animal virus, the white spot syndrome virus (WSSV) responsible for huge economic losses and loss of employment in aquaculture, suffers from inconsistent annotation nomenclature. Novel genome sequence, circular genome and variable genome length led to nomenclature inconsistencies. Since vast knowledge has already accumulated in the past two decades with inconsistent nomenclature, the insights gained on a genome could not be easily extendable to other genomes. Therefore, the present study aims to perform comparative genomics studies in WSSV on uniform nomenclature. METHODS We have combined the standard mummer tool with custom scripts to develop missing regions finder (MRF) that documents the missing genome regions and coding sequences in virus genomes in comparison to a reference genome and in its annotation nomenclature. The procedure was implemented as web tool and in command-line interface. Using MRF, we have documented the missing coding sequences in WSSV and explored their role in virulence through application of phylogenomics, machine learning models and homologous genes. RESULTS We have tabulated and depicted the missing genome regions, missing coding sequences and deletion hotspots in WSSV on a common annotation nomenclature and attempted to link them to virus virulence. It was observed that the ubiquitination, transcription regulation and nucleotide metabolism might be essentially required for WSSV pathogenesis; and the structural proteins, VP19, VP26 and VP28 are essential for virus assembly. Few minor structural proteins in WSSV would act as envelope glycoproteins. We have also demonstrated the advantage of MRF in providing detailed graphic/tabular output in less time and also in handling of low-complexity, repeat-rich and highly similar regions of the genomes using other virus cases. CONCLUSIONS Pathogenic virus research benefits from tools that could directly indicate the missing genomic regions and coding sequences between isolates/strains. In virus research, the analyses performed in this study provides an advancement to find the differences between genomes and to quickly identify the important coding sequences/genomes that require early attention from researchers. To conclude, the approach implemented in MRF complements similarity-based tools in comparative genomics involving large, highly-similar, length-varying and/or inconsistently annotated viral genomes.
Collapse
Affiliation(s)
- Karthic Krishnan
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Vinaya Kumar Katneni
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India.
| | - Sudheesh K Prabhudas
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Nimisha Kaikkolante
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Ashok Kumar Jangam
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Upendra Kumar Katneni
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Maryland, USA
| | - Chris Hauton
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padua, Italy
| | - Shashi Shekhar Mudagandur
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Vijayan K Koyadan
- Centre for Bioinformatics, Nutrition Genetics and Biotechnology Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Jithendran Karingalakkandy Poochirian
- Aquatic Animal Health and Environment Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | | |
Collapse
|
7
|
Wssv susceptibility in the early life stages of penaeus vannamei shows relationship with bodyweight. J Invertebr Pathol 2023; 198:107912. [PMID: 36924987 DOI: 10.1016/j.jip.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
White Spot Syndrome Virus (WSSV) continues to cause considerable loss to shrimp farmers globally with frequent outbreaks even in specific pathogen free Peneaus vannamei. Our studies showed that the bodyweight (BW) of PL has a bearing on their susceptibility to the virus. To test this hypothesis, PL of the same age group and family were grouped according to BW (10-20, 30-40, and 50-60 mg) and challenged through immersion route with two viral doses (106 and 107 virus copies/L of water). It was observed that the PL became susceptible to WSSV at ≥50 mg BW. In the 50-60 mg PL group, the higher challenge dose shows a sharp mortality curve with 100% mortality at 10 days post immersion, while the lower dose shows a steady increase in cumulative mortality that reaches 100% on the 13th day post immersion. The study also brings out that an in vivo viral load of approximately 3.5 to 4.5×107WSSV copies/100 ng shrimp DNA results in mortality. This is the first report on the relationship between BW and WSSV susceptibility in shrimp PL. Also reported here is a quantitative assessment of WSSV infection in P. vannamei PL and an optimized challenge protocol.
Collapse
|
8
|
Abstract
White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.
Collapse
|
9
|
Hernández-Montiel Á, Giffard-Mena I, Weidmann M, Bekaert M, Ulrich K, Benkaroun J. Virulence and genetic differences among white spot syndrome virus isolates inoculated in Penaeus vannamei. DISEASES OF AQUATIC ORGANISMS 2022; 152:85-98. [PMID: 36453457 DOI: 10.3354/dao03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
White spot syndrome virus (WSSV) infects several economically important aquaculture species, and has caused significant losses to the industry. This virus belongs to the Nimaviridae family and has a dsDNA genome ranging between 257 and 309 kb (more than 20 isolate genomes have been fully sequenced and published to date). Multiple routes of infection could be the cause of the high virulence and mortality rates detected in shrimp species. Particularly in Penaeus vannamei, differences in isolate virulence have been observed, along with controversy over whether deletions or insertions are associated with virulence gain or loss. The pathogenicity of 3 isolates from 3 localities in Mexico (2 from Sinaloa: 'CIAD' and 'Angostura'; and one from Sonora: 'Sonora') was evaluated in vivo in whiteleg shrimp P. vannamei infection assays. Differences were observed in shrimp mortality rates among the 3 isolates, of which Sonora was the most virulent. Subsequently, the complete genomes of the Sonora and Angostura isolates were sequenced in depth from infected shrimp tissues and assembled in reference to the genome of isolate strain CN01 (KT995472), comprising 289350 and 288995 bp, respectively. Three deletion zones were identified compared to CN01, comprising 15 genes, including 3 envelope proteins (VP41A, VP52A and VP41B), 1 non-structural protein (ICP35) and 11 other encoding proteins whose function is currently unknown. In addition, 5 genes (wsv129, wsv178, wsv204, wsv249 and wsv497) presented differences in their repetitive motifs, which could potentially be involved in the regulation of gene expression, causing virulence variations.
Collapse
Affiliation(s)
- Álvaro Hernández-Montiel
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Ensenada, Baja California 22860, Mexico
| | | | | | | | | | | |
Collapse
|
10
|
He J, Yu Y, Li ZM, Liu ZX, Weng SP, Guo CJ, He JG. Hypoxia triggers the outbreak of infectious spleen and kidney necrosis virus disease through viral hypoxia response elements. Virulence 2022; 13:714-726. [PMID: 35465839 PMCID: PMC9045828 DOI: 10.1080/21505594.2022.2065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypoxia frequently occurs in aquatic environments, especially in aquaculture areas. However, research on the relationship between hypoxic aquatic environments with viral diseases outbreak is limited, and its underlying mechanisms remain elusive. Herein, we demonstrated that hypoxia directly triggers the outbreak of infectious spleen and kidney necrosis virus (ISKNV) disease. Hypoxia or activated hypoxia-inducible factor (HIF) pathway could remarkably increase the levels of viral genomic DNA, titers, and gene expression, indicating that ISKNV can response to hypoxia and HIF pathway. To reveal the mechanism of ISKNV respond to HIF pathway, we identified the viral hypoxia response elements (HREs) in ISKNV genome. Fifteen viral HREs were identified, and four related viral genes responded to the HIF pathway, in which the hre-orf077r promoter remarkably responded to the HIF pathway. The level of orf077r mRNA dramatically increased after the infected cells were treated with dimethyloxalylglycine (DMOG) or the infected cells/fish subjected to hypoxic conditions, and overexpressed orf077r could remarkably increase the ISKNV replication. These finding shows that hypoxic aquatic environments induce the expression of viral genes through the viral HREs to promote ISKNV replication, indicating that viral HREs might be important biomarkers for the evaluation of the sensitivity of aquatic animal viral response to hypoxia stress. Furthermore, the frequencies of viral HREs in 43 species aquatic viral genomes from 16 families were predicted and the results indicate that some aquatic animal viruses, such as Picornavirdea, Dicistronviridae, and Herpesviridae, may have a high risk to outbreak when the aquatic environment encounters hypoxic stress.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Xuan Liu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
11
|
Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022; 14:v14030585. [PMID: 35336992 PMCID: PMC8953307 DOI: 10.3390/v14030585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea;
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Su-Min Hong
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| |
Collapse
|
12
|
Ren XC, Liu XP, Liu QH. Litopenaeus vannamei peroxiredoxin 2-like is involved in WSSV infection by interaction with wsv089 and VP26. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104243. [PMID: 34450129 DOI: 10.1016/j.dci.2021.104243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most dangerous pathogen in shrimp aquaculture, which can cause extremely high mortality of shrimp. A full understanding of virus-host interactions is important to prevent viral infection. In the present study, wsv089-interacting molecule Litopenaeus vannamei peroxiredoxins2-like (LvPrx2-L) was selected by the yeast two-hybrid (Y2H) method. The interaction between wsv089 and LvPrx2-L was confirmed by far-western blotting assay. Interestingly, a further study indicated that LvPrx2-L interacted with VP26, and the molecular docking analysis supported the interaction between LvPrx2-L and VP26. Tissues distribution assay showed that LvPrx2-L was detected in all sampled tissues. The highest expression of LvPrx2-L was appeared in hemocytes. Following WSSV challenge, LvPrx2-L mRNA transcripts were significantly increased in the hemocytes and gill. In addition, the relative expression of IE1 and VP28 were remarkably up-regulated in the hepatopancreas and intestines of LvPrx2-L-knockdown shrimp. Moreover, the cumulative survival rate was significantly lower in the LvPrx2-L- silenced group compared with the control and blank groups. Furthermore, LvPrx2-L could regulate the expression of proPO, crustin, ALF3, and CAT at the mRNA level. These findings would further deepen our understanding of WSSV-host interaction and shrimp antiviral response. All these data might useful for assessing the function of LvPrx2-L in the immune response of crustacean.
Collapse
Affiliation(s)
- Xing-Chao Ren
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao-Ping Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Shanghai Ocean University, Shanghai, 201306, China
| | - Qing-Hui Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture,Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
13
|
Genotype Diversity and Spread of White Spot Syndrome Virus (WSSV) in Madagascar (2012-2016). Viruses 2021; 13:v13091713. [PMID: 34578294 PMCID: PMC8472404 DOI: 10.3390/v13091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
White Spot Disease (WSD) caused by the White Spot Syndrome Virus (WSSV) is the most devastating viral disease threatening the shrimp culture industry worldwide, including Madagascar. WDS was first reported on the island in 2012; however, little is known about the circulation of the virus and its genetic diversity. Our study aimed at describing the molecular diversity and the spread of WSSV in the populations of Madagascan crustaceans. Farmed and wild shrimps were collected from various locations in Madagascar from 2012 to 2016 and were tested for WSSV. Amplicons from positive specimens targeting five molecular markers (ORF75, ORF94, ORF125, VR14/15 and VR23/24) were sequenced for genotyping characterizations. Four genotypes were found in Madagascar. The type-I genotype was observed in the south-west of Madagascar in April 2012, causing a disastrous epidemic, then spread to the North-West coast. Type-II strains were detected in October 2012 causing an outbreak in another Penaeus monodon farm. In 2014 and 2015, types II and III were observed in shrimp farms. Finally, in 2016, types II and IV were found in wild species including Fenneropenaeus indicus, Metapenaeus monoceros, Marsupenaeus japonicus and Macrobrachium rosenbergii. Considering the economic importance of the shrimp industry for Madagascar, our study highlights the need to maintain WSSV surveillance to quickly take appropriate countermeasures in case of outbreak and to sustain this industry.
Collapse
|
14
|
Millard RS, Bickley LK, Bateman KS, Farbos A, Minardi D, Moore K, Ross SH, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Global mRNA and miRNA Analysis Reveal Key Processes in the Initial Response to Infection with WSSV in the Pacific Whiteleg Shrimp. Viruses 2021; 13:v13061140. [PMID: 34199268 PMCID: PMC8231841 DOI: 10.3390/v13061140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed—with limited differential expression from 3–12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.
Collapse
Affiliation(s)
- Rebecca S. Millard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| | - Lisa K. Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Kelly S. Bateman
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Audrey Farbos
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Diana Minardi
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Karen Moore
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Stuart H. Ross
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Grant D. Stentiford
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Ronny van Aerle
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Eduarda M. Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| |
Collapse
|
15
|
Zheng SC, Xu JY, Liu HP. Cellular entry of white spot syndrome virus and antiviral immunity mediated by cellular receptors in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2019; 93:580-588. [PMID: 31398395 DOI: 10.1016/j.fsi.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Enveloped virus usually utilizes the receptor-mediated multiple endocytic routes to enter permissive host cells for successful infection. Cellular receptors are cell surface molecules, either by helping viral attachment to cell surface followed by internalization or by triggering antiviral immunity, participate in the viral-host interaction. White spot syndrome virus (WSSV), the most lethally viral pathogen with envelope and double strand DNA genome in crustacean farming, including shrimp and crayfish, has been recently found to recruit various endocytic routes for cellular entry into host cells. Meanwhile, other than the typical pattern recognition receptors for recognition of WSSV, more and more putative cellular receptors have lately been characterized to facilitate or inhibit WSSV entry. In this review, recent findings on the endocytosis-dependent WSSV entry, viral entry mediated by putative cellular receptors, the molecular interplay between WSSV and cellular receptors, and the following anti-WSSV immunity are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis and further possible antiviral control of white spot disease in crustacean farming.
Collapse
Affiliation(s)
- Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiao-Yang Xu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Parrilla-Taylor DP, Vibanco-Pérez N, Durán-Avelar MDJ, Gomez-Gil B, Llera-Herrera R, Vázquez-Juárez R. Molecular variability and genetic structure of white spot syndrome virus strains from northwest Mexico based on the analysis of genomes. FEMS Microbiol Lett 2019; 365:5090402. [PMID: 30184198 DOI: 10.1093/femsle/fny216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022] Open
Abstract
White spot syndrome virus (WSSV) has a ∼300 kb double-stranded DNA genome. It originated in China, spread rapidly through shrimp farms in Asia, and subsequently to America. This study determined complete genome sequences for nine historic WSSV strains isolated from Pacific white shrimp (Litopenaeus vannamei) captured in farm ponds in northwest Mexico (Sinaloa and Nayarit). Genomic DNA was captured by an amplification method using overlapping long-range PCR and sequencing by Ion Torrent-PGM. Complete genome sequences were assembled (length range 255-290 kb) and comparative genome analysis with WSSV strains revealed substantial deletions (3 and 10 kb in two regions) in seven strains, with two strains differing from the rest. Phylogenetic analysis identified that the WSSV strains from the northern area of the state of Sinaloa clustered with strains from China (LC1, LC10, DVI) and Korea (ACF2, ACF4), while those from the southern region of the state of Nayarit (AC1 and JP) differed from both of those and from strains found in Taiwan and Thailand. Our data offer insights into the diversity of the WSSV genome in one country and their divergent origin, suggest that it entered Mexico via multiple routes and that specific genome regions can accommodate substantial deletions without compromising viability.
Collapse
Affiliation(s)
- Delia Patricia Parrilla-Taylor
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096. México
| | - Norberto Vibanco-Pérez
- Universidad Autónoma de Nayarit. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Tepic, Nayarit. 63000. México
| | - Maria de Jesús Durán-Avelar
- Universidad Autónoma de Nayarit. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Tepic, Nayarit. 63000. México
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture, Sinaloa. 82000. México
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México. Joel Montes Camarena s/n, P.O.Box 811. Mazatlán, Sinaloa, Mexico. 82000
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096. México
| |
Collapse
|
17
|
Oakey J, Smith C, Underwood D, Afsharnasab M, Alday-Sanz V, Dhar A, Sivakumar S, Sahul Hameed AS, Beattie K, Crook A. Global distribution of white spot syndrome virus genotypes determined using a novel genotyping assay. Arch Virol 2019; 164:2061-2082. [PMID: 31131427 PMCID: PMC6591196 DOI: 10.1007/s00705-019-04265-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
White spot disease, caused by infection with white spot syndrome virus (WSSV), is a serious panzootic affecting prawn aquaculture. The disease has spread rapidly around the prawn-culturing regions of the world through a number of previously identified mechanisms. The ability to distinguish and trace strains of WSSV is of great benefit to identify, and then limit, the translocation routes of the disease. Here, we describe a novel genotyping method using 34 short tandem repeat regions of the viral genome concurrently. This technique is highly sensitive to strain differences when compared to previous methods. The efficacy of the described method is demonstrated by testing WSSV isolates from around the globe, showing regional genotypic differences. The differences in the genotypes were used to create a global minimum spanning network, and in most cases the observed relationships were substantiated with verification of transboundary movement. This novel panel of STR markers will provide a valuable epidemiological tool for white spot disease. We have applied this to an outbreak of the disease in Queensland, Australia, that occurred in 2016. While the results indicate that the source of this outbreak currently remains cryptic, the analyses have provided valuable insights with which to further study the origins of the strains involved.
Collapse
Affiliation(s)
- J Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Queensland Department of Agriculture and Fisheries, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia.
| | - C Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Queensland Department of Agriculture and Fisheries, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - D Underwood
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Queensland Department of Agriculture and Fisheries, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - M Afsharnasab
- Department of Aquatic Animal Health and Diseases, Iranian Fisheries Research Organization, Tehran, Iran
| | - V Alday-Sanz
- National Aquaculture Group, King Abdul Aziz Rd, Al Murjan, Jeddah, 23715, Kingdom of Saudi Arabia
| | - A Dhar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, 1041 E Lowell St, Tucson, AZ, 85721, USA
| | - S Sivakumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu, India
| | - K Beattie
- Biosecurity Queensland, Queensland Department of Agriculture and Fisheries, 41 George Street, Brisbane, 4000, Australia
| | - A Crook
- Biosecurity Queensland, Queensland Department of Agriculture and Fisheries, 41 George Street, Brisbane, 4000, Australia
| |
Collapse
|
18
|
Li L, Hong Y, Qiu H, Yang F, Li F. VP19 is important for the envelope coating of white spot syndrome virus. Virus Res 2019; 270:197666. [PMID: 31306682 DOI: 10.1016/j.virusres.2019.197666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
VP19 is a major envelope protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. However, the exact function of VP19 in WSSV assembly and infection is unknown. To understand the function of VP19, the gene was knocked down by RNA interference. We found that the dsRNA specific for vp19 gene dramatically reduced the replication of WSSV genomic DNA in infected animals. Further investigation by transmission electron microscopy showed that inhibition of VP19 prevented envelope coating of progeny virions, resulting in a high amount of immature virus particles without outer layer (envelope) in the host cells. This finding was further confirmed by SDS-PAGE analysis, which showed the loss of VP19 and other envelope proteins from the improperly assembled virions. These results suggest that VP19 is essential for WSSV envelope coating.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Huaina Qiu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| |
Collapse
|
19
|
de Macêdo Mendes C, Teixeira DG, Lima JPMS, Lanza DCF. Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome. BMC STRUCTURAL BIOLOGY 2019; 19:8. [PMID: 30999895 PMCID: PMC6474068 DOI: 10.1186/s12900-019-0106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 01/07/2023]
Abstract
Background White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV variable regions were characterized in silico. Results The in silico approach enabled determining the variability of some sequences, as well as the identification of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related to protein modulation/degradation, intracellular transport, recombination and endosome fusion events. Conclusions The bioinformatics approaches were efficient in generating three-dimensional models and to identify domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497. Electronic supplementary material The online version of this article (10.1186/s12900-019-0106-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cayro de Macêdo Mendes
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Gomes Teixeira
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo Matos Santos Lima
- Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Carlos Ferreira Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
20
|
Crustacean Genome Exploration Reveals the Evolutionary Origin of White Spot Syndrome Virus. J Virol 2019; 93:JVI.01144-18. [PMID: 30404800 DOI: 10.1128/jvi.01144-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
White spot syndrome virus (WSSV) is a crustacean-infecting, double-stranded DNA virus and is the most serious viral pathogen in the global shrimp industry. WSSV is the sole recognized member of the family Nimaviridae, and the lack of genomic data on other nimaviruses has obscured the evolutionary history of WSSV. Here, we investigated the evolutionary history of WSSV by characterizing WSSV relatives hidden in host genomic data. We surveyed 14 host crustacean genomes and identified five novel nimaviral genomes. Comparative genomic analysis of Nimaviridae identified 28 "core genes" that are ubiquitously conserved in Nimaviridae; unexpected conservation of 13 uncharacterized proteins highlighted yet-unknown essential functions underlying the nimavirus replication cycle. The ancestral Nimaviridae gene set contained five baculoviral per os infectivity factor homologs and a sulfhydryl oxidase homolog, suggesting a shared phylogenetic origin of Nimaviridae and insect-associated double-stranded DNA viruses. Moreover, we show that novel gene acquisition and subsequent amplification reinforced the unique accessory gene repertoire of WSSV. Expansion of unique envelope protein and nonstructural virulence-associated genes may have been the key genomic event that made WSSV such a deadly pathogen.IMPORTANCE WSSV is the deadliest viral pathogen threatening global shrimp aquaculture. The evolutionary history of WSSV has remained a mystery, because few WSSV relatives, or nimaviruses, had been reported. Our aim was to trace the history of WSSV using the genomes of novel nimaviruses hidden in host genome data. We demonstrate that WSSV emerged from a diverse family of crustacean-infecting large DNA viruses. By comparing the genomes of WSSV and its relatives, we show that WSSV possesses an expanded set of unique host-virus interaction-related genes. This extensive gene gain may have been the key genomic event that made WSSV such a deadly pathogen. Moreover, conservation of insect-infecting virus protein homologs suggests a common phylogenetic origin of crustacean-infecting Nimaviridae and other insect-infecting DNA viruses. Our work redefines the previously poorly characterized crustacean virus family and reveals the ancient genomic events that preordained the emergence of a devastating shrimp pathogen.
Collapse
|
21
|
Complete Genome Sequence of White Spot Syndrome Virus Isolated from Indian White Prawn ( Fenneropenaeus indicus) in Egypt. Microbiol Resour Announc 2019; 8:MRA01508-18. [PMID: 30637403 PMCID: PMC6318374 DOI: 10.1128/mra.01508-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/20/2022] Open
Abstract
White spot disease, caused by the white spot syndrome virus (WSSV), has caused major losses in shrimp farming in Egypt since 2009. The genome sequence of the WSSV-Egypt isolate will be valuable in epidemiological studies to delineate the origin and spread of WSSV in Egypt and elsewhere in the world.
Collapse
|
22
|
Han Y, Li F, Xu L, Yang F. A VP24-truncated isolate of white spot syndrome virus is inefficient in per os infection. Vet Res 2017; 48:87. [PMID: 29228988 PMCID: PMC5725807 DOI: 10.1186/s13567-017-0492-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major pathogen of penaeid shrimp. Here we identified a new WSSV strain, WSSV-CN04, from naturally infected Marsupenaeus japonicus. Whole genomic sequencing results indicate that the WSSV-CN04 genome was 281 054 bp in length, and encoded 157 hypothetic proteins. The genome sequence of WSSV-CN04 was most closely related to the low-virulent strain WSSV-CN03, sharing 97.5% sequence identity. Notably, in WSSV-CN04, the major envelop protein VP24 was not only truncated but also absent in the virions. Since VP24 was previously reported to be essential for WSSV per os infection by mediating WSSV-chitin interaction, we further analyzed the peroral infection of WSSV-CN03 and -CN04 in Litopenaeus vannamei, and show that the infectivity of WSSV-CN04 was significantly lower than that of WSSV-CN03. When compared with WSSV-CN03-infected shrimp, fewer virions were detected in the digestive tract tissues of WSSV-CN04-infected shrimp at 4 hours post-infection (hpi), and the viral titers in the animals at 24 hpi were much lower. Moreover, a peptide corresponding to VP24 chitin-binding domain reduced the amount of WSSV-CN03 in the midgut to a level similar to that of WSSV-CN04 at 4 hpi. These findings indicate that the truncation of VP24 may attenuate the peroral infectivity of WSSV-CN04, and therefore verify the important role of VP24 in WSSV per os infection.
Collapse
Affiliation(s)
- Yali Han
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China. .,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China. .,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China. .,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.
| |
Collapse
|