1
|
Development and validation of a competitive ELISA based on bacterium-original virus-like particles of serotype O foot-and-mouth disease virus for detecting serum antibodies. Appl Microbiol Biotechnol 2019; 103:3015-3024. [DOI: 10.1007/s00253-019-09680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/28/2023]
|
2
|
Singh I, Deb R, Kumar S, Singh R, Andonissamy J, Smita S, Sengar GS, Kumar R, Ojha KK, Sahoo NR, Murali S, Chandran R, Nair RV, Lal SB, Mishra DC, Rai A. Deciphering foot-and-mouth disease (FMD) virus-host tropism. J Biomol Struct Dyn 2019; 37:4779-4789. [PMID: 30654708 DOI: 10.1080/07391102.2019.1567386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pattern of interactions between foot and mouth disease (FMD) viral protein 1 (VP1) with susceptible and resistant host integrins were deciphered. The putative effect of site-directed mutation on alteration of interaction is illustrated using predicted and validated 3D structures of VP1, mutated VP1 and integrins of Bos taurus, Gallus and Canis. Strong interactions were observed between FMDV-VP1 protein motifs at conserved tripeptide, Arg-Gly-Asp 143RGD145 and at domain 676SIPLQ680 in alpha-integrin of B. taurus. Notably, in-silico site-directed mutation in FMDV-VP1 protein led to complete loss of interaction between FMD-VP1 protein and B. taurus integrin, which confirmed the active role of arginine-glycine-aspartic acid (RGD) domain. Interestingly, in-vitro analysis demonstrates the persistence of the putative tropism site 'SIPLQ' in different cattle breeds undertaken. Thus, the attempt to decipher the tropism of FMDV at host receptor level interaction might be useful for future FMD control strategies through development of mimetic marker vaccines and/or host receptor manipulations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Indra Singh
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Rajib Deb
- ICAR-Central Institute for Research on Cattle , Meerut , India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Rani Singh
- ICAR-Central Institute for Research on Cattle , Meerut , India
| | | | - Shuchi Smita
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | | | - Rajiv Kumar
- ICAR-Central Sheep and Wool Research Institute , Avikanagar , India
| | | | | | - S Murali
- ICAR-India National Bureau of Fish Genetic Resources , Lucknow , India
| | - Rejani Chandran
- ICAR-Central Institute of Fisheries Technology , Cochin , India
| | | | - S B Lal
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Dwijesh Chandra Mishra
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| | - Anil Rai
- Centre for Agricultural Bio-Informatics ICAR-Indian Agricultural Statistics Research Institute , New Delhi , India
| |
Collapse
|