1
|
Loriato VAP, Martins LGC, Euclydes NC, Reis PAB, Duarte CEM, Fontes EPB. Engineering resistance against geminiviruses: A review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110410. [PMID: 32005374 DOI: 10.1016/j.plantsci.2020.110410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 05/21/2023]
Abstract
The Geminiviridae family is one of the most successful and largest families of plant viruses that infect a large variety of important dicotyledonous and monocotyledonous crops and cause significant yield losses worldwide. This broad spectrum of host range is only possible because geminiviruses have evolved sophisticated strategies to overcome the arsenal of antiviral defenses in such diverse plant species. In addition, geminiviruses evolve rapidly through recombination and pseudo-recombination to naturally create a great diversity of virus species with divergent genome sequences giving the virus an advantage over the host recognition system. Therefore, it is not surprising that efficient molecular strategies to combat geminivirus infection under open field conditions have not been fully addressed. In this review, we present the anti-geminiviral arsenal of plant defenses, the evolved virulence strategies of geminiviruses to overcome these plant defenses and the most recent strategies that have been engineered for transgenic resistance. Although, the in vitro reactivation of suppressed natural defenses as well as the use of RNAi and CRISPR/Cas systems hold the potential for achieving broad-range resistance and/or immunity, potential drawbacks have been associated with each case.
Collapse
Affiliation(s)
- Virgílio A P Loriato
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Laura G C Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Nívea C Euclydes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Pedro A B Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|