1
|
Jung GH, Lee HS, Lim SJ, Choi H. Evaluation of soil pesticide leaching to groundwater using undisturbed lysimeter: development of the pesticide groundwater leaching scoring system (PLS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21973-21985. [PMID: 38400967 DOI: 10.1007/s11356-024-32595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Groundwater pesticide safety management is essential for providing consistently safe water for humans, but such management is limited globally. In this study, we developed an accurate and convenient exposure assessment method for the safety management of pesticides in groundwater by conducting a lysimeter experiment to evaluate the leaching of 11 pesticides into groundwater. During the experimental period, flutoalanil and oxadiazon had the highest cumulative leaching amounts, 603.7 and 83.5 ng, respectively. Comparative analysis of existing groundwater exposure prediction indices, including the GUS, LEACH, modified LEACH, Hornsby index, and GLI showed no correlations with the measured data (p > 0.05). To enhance the accuracy of the assessment method, we used lysimeter data and principal component analysis to determine the main factors affecting groundwater leaching, and developed the "pesticide groundwater leaching scoring system" (PLS). The soil and water half-life, which had the greatest positive impact on groundwater leaching, was set as a 10-point indicator, whereas log P was set as a 1-point indicator. In contrast, solubility in water was determined as a 5-point indicator, and organic carbon partition coefficient and vapor pressure were determined as 2.5-point indicators owing to their negative relationship. The correlation coefficient was 0.670, indicating a significant correlation with the lysimeter data (p < 0.05). Using our scoring system, we ranked 376 pesticides. As an exposure assessment method developed using actual data, the PLS is expected to be applicable to groundwater safety management.
Collapse
Affiliation(s)
- Gun-Hee Jung
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development, Wanju, 55365, Republic of Korea
| | - Hyo-Sub Lee
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development, Wanju, 55365, Republic of Korea.
| | - Sung-Jin Lim
- Environment and Agriculture Department, Jeonju Agricultural Technology Center, Jeonju, 54810, Republic of Korea
| | - Hoon Choi
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, 54538, Republic of Korea
| |
Collapse
|
2
|
Tauchnitz N, Kurzius F, Rupp H, Schmidt G, Hauser B, Schrödter M, Meissner R. Assessment of pesticide inputs into surface waters by agricultural and urban sources - A case study in the Querne/Weida catchment, central Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115186. [PMID: 32889519 DOI: 10.1016/j.envpol.2020.115186] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticide inputs into surface waters may cause harmful effects on aquatic life communities and substantially contribute to environmental pollution. The present study aimed at evaluating the input pathways in the Querne/Weida catchment (central Germany) to efficiently target mitigation measures of pesticide losses. Relevant pesticide substances were measured in surface waters in agricultural and urban surroundings and in soil samples within the catchment area. Pesticides application data from farmers were analyzed. Additionally, batch tests were performed to determine sorption and degradation of relevant pesticides for site specific soil properties. Frequency of detection, number of pesticides and maximum concentrations were much higher in the surface water samples in mainly urban surroundings compared to those in agricultural surrounding. The most frequently detected substances were glyphosate, AMPA, diflufenican and tebuconazole in surface water samples and diflufenican, boscalid, tebuconazole and epoxiconazole in the topsoil samples. Glyphosate and AMPA contributed to the highest concentrations in surface water samples (max. 58 μg L-1) and soil samples (max. 0.19 mg kg-1). In most cases, pesticide detections in surface water and soil were not consistent with application data from farmers, indicating that urban sources may affect water quality in the catchment area substantially. However, it was observed that pesticide substances remain in the soil over a long time supported by sorption on the soil matrix. Therefore, delayed inputs into surface waters could be suspected. For the implementation of reduction measures, both urban and agricultural sources should be considered. Novel findings of the study: pesticide detections were not consistent with application data from farmers, urban sources contributed substantially to pesticide pollution of surface waters.
Collapse
Affiliation(s)
- Nadine Tauchnitz
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agronomy and Crop Production, Strenzfelder Allee 22, 06406, Bernburg, Germany.
| | - Florian Kurzius
- BGD ECOSAX GmbH, Tiergartenstraße 48, 01219, Dresden, Germany
| | - Holger Rupp
- Helmholtz Centre for Environmental Research-UFZ, Dept. of Soil System Science, Lysimeter Station, Falkenberg 55, D-39615, Altmärkische Wische, Germany
| | - Gerd Schmidt
- Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Geosciences and Geography, Geology, Von-Seckendorff-Platz 4, 06120, Halle (S.), Germany
| | - Barbara Hauser
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agricultural Analyses, Schiepziger Strasse 29, 06120, Halle (S.), Germany
| | - Matthias Schrödter
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agronomy and Crop Production, Strenzfelder Allee 22, 06406, Bernburg, Germany
| | - Ralph Meissner
- Helmholtz Centre for Environmental Research-UFZ, Dept. of Soil System Science, Lysimeter Station, Falkenberg 55, D-39615, Altmärkische Wische, Germany
| |
Collapse
|
3
|
Gros P, Meissner R, Wirth MA, Kanwischer M, Rupp H, Schulz-Bull DE, Leinweber P. Leaching and degradation of 13C 2- 15N-glyphosate in field lysimeters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:127. [PMID: 31960150 PMCID: PMC6970956 DOI: 10.1007/s10661-019-8045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLYP), the globally most important herbicide, may have effects in various compartments of the environment such as soil and water. Although laboratory studies showed fast microbial degradation and a low leaching potential, it is often detected in various environmental compartments, but pathways are unknown. Therefore, the objective was to study GLYP leaching and transformations in a lysimeter field experiment over a study period of one hydrological year using non-radioactive 13C2-15N-GLYP labelling and maize cultivation. 15N and 13C were selectively measured using isotopic ratio mass spectrometry (IR-MS) in leachates, soil, and plant material. Additionally, HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) was used for quantitation of GLYP and its main degradation product aminomethylphosphonic acid (AMPA) in different environmental compartments (leachates and soil). Results show low recoveries for GLYP (< 3%) and AMPA (< level of detection) in soil after the study period, whereas recoveries of 15N (11-19%) and 13C (23-54%) were higher. Time independent enrichment of 15N and 13C and the absence of GLYP and AMPA in leachates indicated further degradation. 15N was enriched in all compartments of maize plants (roots, shoots, and cobs). 13C was only enriched in roots. Results confirmed rapid degradation to further degradation products, e.g., 15NH4+, which plausibly was taken up as nutrient by plants. Due to the discrepancy of low GLYP and AMPA concentrations in soil, but higher values for 15N and 13C after the study period, it cannot be excluded that non-extractable residues of GLYP remained and accumulated in soil.
Collapse
Affiliation(s)
- Peter Gros
- Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany.
| | - Ralph Meissner
- Department of Soil System Science, Helmholtz Centre for Environmental Research, Lysimeter Station, Falkenberg 55, 39615, Altmärkische Wische, Germany
| | - Marisa A Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Holger Rupp
- Department of Soil System Science, Helmholtz Centre for Environmental Research, Lysimeter Station, Falkenberg 55, 39615, Altmärkische Wische, Germany
| | - Detlef E Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Peter Leinweber
- Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| |
Collapse
|
4
|
Nguyen NK, Dörfler U, Welzl G, Munch JC, Schroll R, Suhadolc M. Large variation in glyphosate mineralization in 21 different agricultural soils explained by soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:544-552. [PMID: 29426177 DOI: 10.1016/j.scitotenv.2018.01.204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) have frequently been detected in surface water and groundwaters. Since adequate glyphosate mineralization in soil may reduce its losses to environment, improved understanding of site specific factors underlying pesticide mineralization in soils is needed. The aim of this study was to investigate the relationship between soil properties and glyphosate mineralization. To establish a sound basis for resilient correlations, the study was conducted with a large number of 21 agricultural soils, differing in a variety of soil parameters, such as soil texture, soil organic matter content, pH, exchangeable ions etc. The mineralization experiments were carried out with 14C labelled glyphosate at a soil water tension of -15 kPa and at a soil density of 1.3 g cm-3 at 20 ± 1 °C for an incubation period of 32 days. The results showed that the mineralization of glyphosate in different agricultural soils varied to a great extent, from 7 to 70% of the amount initially applied. Glyphosate mineralization started immediately after application, the highest mineralization rates were observed within the first 4 days in most of the 21 soils. Multiple regression analysis revealed exchangeable acidity (H+ and Al3+), exchangeable Ca2+ ions and ammonium lactate extractable K to be the key soil parameters governing glyphosate mineralization in the examined soils. A highly significant negative correlation between mineralized glyphosate and NaOH-extractable residues (NaOH-ER) in soils strongly suggests that NaOH-ER could be used as a simple and reliable parameter for evaluating the glyphosate mineralization capacity. The NaOH-ER were composed of glyphosate, unknown 14C-residues, and AMPA (12%-65%, 3%-34%, 0%-11% of applied 14C, respectively). Our results highlighted the influential role of soil exchangeable acidity, which should therefore be considered in pesticide risk assessments and management to limit efficiently the environmental transfers of glyphosate.
Collapse
Affiliation(s)
- Nghia Khoi Nguyen
- Cantho University, Department of Soil Science, Cantho City, Viet Nam; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Ulrike Dörfler
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Gerhard Welzl
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean Charles Munch
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, 85354 Freising, Germany
| | - Reiner Schroll
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Marjetka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Katagi T. Soil column leaching of pesticides. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 221:1-105. [PMID: 23090630 DOI: 10.1007/978-1-4614-4448-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are persistence (DT50) of the pesticide, and its sorption/desorption(Koc) characteristics. These parameters may vary for the same pesticide from geographic site-to-site and with soil depth. The interactions that normally occur between pesticides and dissolved organic matter (DOM) or WDC are yet other factors that may complicate pesticide leaching behavior.The soil mobility of pesticides is normally tested both in the laboratory and in the field. Lab studies are initially performed to give researchers a preliminary appraisal of the relative mobility of a pesticide. Later, field lysimeter studies can be performed to provide more natural leaching conditions that emulate the actual field use pattern. Lysimeter studies give the most reliable information on the leaching behavior of a pesticide under field conditions, but these studies are time-consuming and expensive and cannot be performed everywhere. It is for this reason that the laboratory soil column leaching approach is commonly utilized to profile the mobility of a pesticide,and appraise how it behaves in different soils, and relative to other pesticides.Because the soil structure is chemically and physically heterogenous, different pesticide tests may produce variable DT50 and Koc values; therefore, initial pesticide mobility testing is undertaken in homogeneously packed columns that contain two or more soils and are eluted at constant flow rates. Such studies are done in duplicate and utilize a conservative tracer element. By fitting an appropriate mathematical model to the breakthrough curve of the conservative tracer selected,researchers determine key mobility parameters, such as pore water velocity, the column-specific dispersion coefficient, and the contribution of non equilibrium transport processes. Such parameters form the basis for estimating the probable transport and degradation rates that will be characteristic of the tested pesticide. Researchers also examine how a pesticide interacts with soil DOM and WDC, and what contribution from facilitated transport to mobility is made as a result of the effects of pH and ionic strength. Other methods are used to test how pesticides may interact with soil components to change mobility. Spectroscopic approaches are used to analyze the nature of soil pesticide complexes. These may provide insight into the mechanism by which interactions occur. Other studies may be performed to determine the effect of agricultural practices (e.g., tillage) on pesticide leaching under controlled conditions using intact soil cores from the field. When preferential flow is suspected to occur, dye staining is used to examine the contribution of macropores to pesticide transport. These methods and others are addressed in the text of this review.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, Japan.
| |
Collapse
|
6
|
Scientific Opinion on an application (EFSA‐GMO‐NL‐2005‐24) for the placing on the market of the herbicide tolerant genetically modified soybean 40‐3‐2 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Suhadolc M, Schroll R, Hagn A, Dörfler U, Schloter M, Lobnik F. Single application of sewage sludge--impact on the quality of an alluvial agricultural soil. CHEMOSPHERE 2010; 81:1536-43. [PMID: 20825967 DOI: 10.1016/j.chemosphere.2010.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 05/29/2023]
Abstract
The effects of sewage sludge on soil quality with regard to its nutrient and heavy metal content, microbial community structure and ability to maintain specific soil function (degradation of herbicide glyphosate) were investigated in a three months study using an alluvial soil (Eutric Fluvisol). Dehydrated sewage sludge significantly increased soil organic matter (up to 20.6% of initial content), total and available forms of N (up to 33% and 220% of initial amount, respectively), as well as total and plant available forms of P (up to 11% and 170% of initial amount, respectively) and K (up to 70% and 47% of initial amount, respectively) in the upper 2 cm soil layer. The increase of organic matter was most prominent 3d after the application of sewage sludge, after 3 months it was no longer significant. Contents of nutrients kept to be significantly higher in the sewage sludge treated soil till the end of experiment. Contents of some heavy metals (Zn, Cu, Pb) increased as well. The highest increase was found for Zn (up to 53% of initial amount), however it was strongly bound to soil particles and its total content was kept below the maximum permissible limit for agricultural soil. Based on molecular fingerprinting of bacterial 16S rRNA gene and fungal ITS fragment on 3rd day and 3rd month after sewage sludge amendment, significant short term effects on bacterial and fungal communities were shown due to the sewage sludge. The effects were more pronounced and more long-term for bacterial than fungal communities. The mineralization of (14)C-glyphosate in the sewage sludge soil was 55.6% higher than in the control which can be linked to (i) a higher glyphosate bioavailability in sewage sludge soil, which was triggered by the pre-sorption of phosphate originating from the sewage sludge and/or (ii) beneficial alterations of the sewage sludge to the physical-chemical characteristics of the soil.
Collapse
Affiliation(s)
- Metka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Center for Soil and Environmental Science, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|