1
|
Ghanem M, Alleman LY, Rousset D, Perdrix E, Coddeville P. Experimental factors influencing the bioaccessibility and the oxidative potential of transition metals from welding fumes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:843-857. [PMID: 38597352 DOI: 10.1039/d3em00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Inhalation of welding fumes (WFs) containing high levels of transition metals (Cr, Cu, Fe, Mn, Ni…) is associated with numerous health effects including oxidative stress. However, the measurements of the oxidative potential (OP) and bioaccessibility of WF transition metals depend on several physicochemical parameters and may be subject to several experimental artifacts. In this work, we investigated the influence of the experimental conditions that may affect the bioaccessibility of transition metals and their OP on stainless-steel WF extracts. WFs were produced using a generation bench and sampled on filters. The soluble fraction of the metals was analysed. Two different extraction fluids mimicking physiological pulmonary conditions were studied: phosphate buffer and Hatch's solution. Three extraction times were tested to determine the optimal time for a significant OPDTT using the dithiothreitol (DTT) method. The storage conditions of WFs after filter sampling such as duration, temperature and atmospheric conditions were investigated. The results indicate that experimental conditions can significantly affect the OPDTT and metal bioaccessibility analyses. Cr, Cu and Ni show higher solubility in Hatch's solution than in the phosphate buffer. Mn is highly sensitive to DTT and shows close solubility in the two fluids. An extraction time of 0.5 h in phosphate buffer allows a better sensitivity to OPDTT, probably by limiting complexations, interactions between metals and precipitation. Storage time and temperature can influence the physical or chemical evolution of the WFs, which can affect their OPDTT and Mn solubility. However, storage under N2(g) limits these changes. On-line measurements of OPDTT could provide an alternative to filter sampling to overcome these artifacts.
Collapse
Affiliation(s)
- Manuella Ghanem
- Department of Pollutants Metrology, Institut National de Recherche et de Sécurité (INRS), Vandoeuvre-lès-Nancy, 54500, France.
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Laurent Y Alleman
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Davy Rousset
- Department of Pollutants Metrology, Institut National de Recherche et de Sécurité (INRS), Vandoeuvre-lès-Nancy, 54500, France.
| | - Esperanza Perdrix
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| | - Patrice Coddeville
- Center for Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Université de Lille, 59000, Lille, France.
| |
Collapse
|
2
|
Tung NT, Ho KF, Niu X, Sun J, Shen Z, Wu F, Cao J, Dung HB, Thuy TPC, Hsiao TC, Liu WT, Chuang HC. Loss of E-cadherin due to road dust PM 2.5 activates the EGFR in human pharyngeal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53872-53887. [PMID: 34036507 DOI: 10.1007/s11356-021-14469-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Exposure to road dust particulate matter (PM) causes adverse health impacts on the human airway. However, the effects of road dust on the upper airway epithelium in humans remain unclear. We investigated the involvement of the epidermal growth factor receptor (EGFR) after PM with an aerodynamic diameter of < 2.5 μm (PM2.5)-induced E-cadherin disruption of human pharyngeal epithelial cells. First, we collected road dust PM2.5 from 10 Chinese cities, including Wuhan, Nanjing, Shanghai, Guangzhou, Chengdu, Beijing, Lanzhou, Tianjin, Harbin, and Xi'an. Human pharyngeal FaDu cells were exposed to road dust PM2.5 at 50 μg/mL for 24 h, cytotoxicity (cell viability and lactate dehydrogenase (LDH)) was assessed, and expressions of the proinflammatory interleukin (IL)-6 and high-mobility group box 1 (HMGB1) protein, receptor for advanced glycation end products (RAGE), occludin, E-cadherin, EGFR, and phosphorylated (p)-EGFR were determined. The E-cadherin gene was then knocked down to investigate EGFR activation in FaDu cells. Exposure to road dust PM2.5 resulted in a decrease in cell viability and increases in LDH and IL-6. Our data suggested that PM2.5 could decrease expressions of occludin and E-cadherin and increase expressions of EGFR and p-EGFR, which was confirmed by E-cadherin-knockdown. Our results showed a negative association between the alterations in E-cadherin and total elemental components in correlation analysis, especially S, Cl, K, Ti, Mn, Fe, Cu, Zn, and Pb. Exposure to metals in PM2.5 from road dust may lead to loss of the barrier function of the upper airway epithelium and activation of the EGFR. Our study showed the adverse effects of road dust PM2.5 on pharyngeal epithelial cells of the human upper airway.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wu
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Hoang Ba Dung
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Phan Chung Thuy
- Otorhinolaryngology Department, Faculty of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution. Antioxidants (Basel) 2021; 10:antiox10081234. [PMID: 34439482 PMCID: PMC8388875 DOI: 10.3390/antiox10081234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence and prevalence of type 2 diabetes have increased in the last decades and are expected to further grow in the coming years. Chronic hyperglycemia triggers free radical generation and causes increased oxidative stress, affecting a number of molecular mechanisms and cellular pathways, including the generation of advanced glycation end products, proinflammatory and procoagulant effects, induction of apoptosis, vascular smooth-muscle cell proliferation, endothelial and mitochondrial dysfunction, reduction of nitric oxide release, and activation of protein kinase C. Among type 2 diabetes determinants, many data have documented the adverse effects of environmental factors (e.g., air pollutants) through multiple exposure-induced mechanisms (e.g., systemic inflammation and oxidative stress, hypercoagulability, and endothelial and immune responses). Therefore, here we discuss the role of air pollution in oxidative stress-related damage to glycemic metabolism homeostasis, with a particular focus on its impact on health. In this context, the improvement of new advanced tools (e.g., omic techniques and the study of epigenetic changes) may provide a substantial contribution, helping in the evaluation of the individual in his biological totality, and offer a comprehensive assessment of the molecular, clinical, environmental, and epidemiological aspects.
Collapse
|
4
|
Pietrogrande MC, Bacco D, Trentini A, Russo M. Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM 2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29551-29563. [PMID: 33565023 PMCID: PMC8222022 DOI: 10.1007/s11356-021-12604-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Solvent extraction of PM2.5 samples collected on the filter is a preliminary step for assessing the PM2.5 oxidative potential (OP) using cell-free assays, as the dithiothreitol (DTT) and the ascorbic acid (AA) assays. In this study, we evaluated the effect of the solvent choice by extracting ambient PM2.5 samples with different solvents: methanol, as organic solvent, and two aqueous buffers, i.e., phosphate buffer (PB) and Gamble's solution (G), as a lung fluid surrogate solution. Both the measured volume-based OPVDTT and OPVAA responses varied for the different extraction methods, since methanol extraction generated the lowest values and phosphate buffer the highest. Although all the tested solvents produced intercorrelated OPVDTT values, the phosphate buffer resulted the most useful for OPDTT assessment, as it provided the most sensible measure (nearly double values) compared with other extractions. The association of the measured OPV values with PM chemical composition suggested that oxidative properties of the investigated PM2.5 samples depend on both transition metals and quinones, as also supported by additional experimental measurements on standard solutions of redox-active species.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy.
| | - Dimitri Bacco
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Arianna Trentini
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Mara Russo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy
| |
Collapse
|
5
|
Han X, Zhuang Y. PM2.5 induces autophagy-mediated cell apoptosis via PI3K/AKT/mTOR signaling pathway in mice bronchial epithelium cells. Exp Ther Med 2020; 21:1. [PMID: 33235610 PMCID: PMC7678636 DOI: 10.3892/etm.2020.9433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Air pollution can highly impact the respiratory system in healthy individuals. Studies have indicated that particles with an aerodynamic diameter of ≤2.5 µm (PM2.5) can be considered to be harmful for lung alveoli and bronchial epithelium cells. PM2.5 can be directly inhaled and can deeply penetrate into the lung alveoli, causing lung dysfunction. However, the toxicological mechanism mediated by PM2.5 for respiratory disease has still not been clearly determined. The purpose of the current study was to investigate the effects of PM2.5 on mouse bronchial epithelium cells (MBECs) and explored the possible mechanism mediated by PM2.5 in MBECs. The results of the current study indicated that PM2.5 markedly decreased lung function, including total lung capacity, residual volume, vital capacity and airway resistance in experimental mice. The results demonstrated that PM2.5 markedly induced inflammatory responses, oxidative injury and MBEC apoptosis. PM2.5 increased interleukin (IL)-1β and IL-6 expression, and reactive oxygen species production in MBECs. Furthermore, PM2.5 specifically induced PI3K, AKT and mTOR expression in MBECs. Disruption of PI3K/AKT/mTOR signaling was also indicated to effectively inhibit apoptosis of MBECs. In conclusion, the results of the current study systematically demonstrated the role of apoptosis-mediated MBEC apoptosis in PM2.5-treated mice, and provides a potential strategy for preclinical intervention in patients with PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Xuemei Han
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yan Zhuang
- Respiratory Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
6
|
Zou W, Wang X, Hong W, He F, Hu J, Sheng Q, Zhu T, Ran P. PM2.5 Induces the Expression of Inflammatory Cytokines via the Wnt5a/Ror2 Pathway in Human Bronchial Epithelial Cells. Int J Chron Obstruct Pulmon Dis 2020; 15:2653-2662. [PMID: 33122903 PMCID: PMC7591099 DOI: 10.2147/copd.s270762] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Purpose Recently, fine particulate matter (PM2.5) was identified as the main exposure risk for COPD, and inflammation is central to the development of COPD. In this study, we investigated whether PM2.5 can induce the secretion of interleukin-6 (IL-6), IL-8 and IL-1β in human bronchial epithelial cells (HBECs) in vitro via the wingless-related integration site 5A (Wnt5a)/receptor tyrosine kinase-like orphan receptor 2 (Ror2) signaling. Methods The expression of Wnt5a and Ror2 was assessed by immunohistochemistry in motor vehicle exhaust (MVE)-induced Sprague-Dawley rats. HBECs were transfected with small interfering RNA (siRNA) targeting Wnt5a or Ror2 and subsequently stimulated with PM2.5.The secretion of IL-6, IL-8 and IL-1β was assessed by ELISAs, and the expression of Wnt5a/Ror2 signaling were assessed by RT-PCR and Western blotting. Results Both Wnt5a and Ror2 protein were increased in the lung of MVE-induced rats. HBECs exposed to PM2.5 for 24 h significantly upregulated Wnt5a and Ror2 expression and subsequently promoted the nuclear translocation of NF-κB, which increased the production of IL-1β, IL-6 and IL-8. Wnt5a siRNA prevented these outcomes. Wnt5a antagonist (BOX5) also prevented inflammatory effects. Furthermore, Ror2 siRNA blocked the NF-κB activity and inhibited the release of IL-6, IL-8 and IL-1β from PM2.5-exposed HBECs. Conclusion PM2.5 induces the secretion of IL-6, IL-8 and IL-1β in HBECs via the Wnt5a/Ror2 signaling, demonstrating a novel mechanism for PM2.5-associated airway inflammation.
Collapse
Affiliation(s)
- Weifeng Zou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fang He
- The Research Center of Experiment Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Qing Sheng
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Tao Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Roper C, Delgado LS, Barrett D, Massey Simonich SL, Tanguay RL. PM 2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:434-442. [PMID: 30507171 PMCID: PMC6652177 DOI: 10.1021/acs.est.8b04308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toxicology research into the global public health burden of fine particulate matter (PM2.5) exposures frequently requires extraction of PM2.5 from filters. A standardized method for these extractions does not exist, leading to inaccurate interlaboratory comparisons. It is largely unknown how different filter extraction methods might impact the composition and bioactivity of the resulting samples. We characterized the variation in these metrics by using equal portions of a single PM2.5 filter, with each portion undergoing a different extraction method. Significant differences were observed between extraction methods for concentrations of elements and polycyclic aromatic hydrocarbons (PAHs) for the PM2.5 tested following its preparation for biological response studies. Importantly, the chemical profiles differed from those observed when we used standard protocols for chemical characterization of the ambient sample, demonstrating that extraction can alter both chemical component amounts and species profiles of the extracts. The impact of these chemical differences on sensitive end points of zebrafish development was investigated. Significant differences in the percent incidence and timing of mortality were associated with the PM2.5 extraction method. This research highlights the importance of and rationale for considering the extraction method when interlaboratory comparisons of PM2.5 toxicology research are made.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lisandra Santiago Delgado
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Damien Barrett
- Department of Microbiology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
8
|
Isley CF, Nelson PF, Taylor MP, Stelcer E, Atanacio AJ, Cohen DD, Mani FS, Maata M. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:450-461. [PMID: 28863376 DOI: 10.1016/j.scitotenv.2017.08.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM2.5: effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM2.5 samples from Suva, spanning one year. Sources of PM2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning.
Collapse
Affiliation(s)
- C F Isley
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - P F Nelson
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - M P Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - E Stelcer
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - A J Atanacio
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - D D Cohen
- Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
| | - F S Mani
- Faculty of Science Technology and Environment, University of the South Pacific, Laucala Campus, Suva, Fiji.
| | - M Maata
- Faculty of Science Technology and Environment, University of the South Pacific, Laucala Campus, Suva, Fiji.
| |
Collapse
|