1
|
Turan H, Sebilo M, Pigot T, Monperrus M. Photodegradation of the main synthetic musk (HHCB) in water: kinetic study and influencing factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1571-1587. [PMID: 39092617 DOI: 10.1039/d4em00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Galaxolide (HHCB) is the most common synthetic musk compound detected in numerous daily products. Despite its persistence in the aquatic environment, the photodegradation of HHCB remains poorly understood. In this study, we investigated the direct and indirect photolysis kinetics of HHCB under simulated sunlight and UVC light. Our aim was to determine the role of reactive oxygen species (ROS) responsible for HHCB degradation in the aquatic environment and to identify its transformation products. The influence of environmental factors on indirect photolysis was investigated by testing both synthetic waters (containing humic acid, carbonate (CO32-), and nitrate (NO3-)) and real waters (riverine and effluent). Hydrogen peroxide (H2O2/UVC) was tested to simulate the wastewater treatment process. Quencher experiments were conducted to identify the role of ROS in HHCB photodegradation, including hydroxyl radicals (˙OH), carbonate radicals (CO3˙-), triplet states of dissolved organic matter (3DOM*), and singlet oxygen (1O2). The results clearly indicated that HHCB was efficiently degraded by direct photolysis under both light conditions. The presence of H2O2 led to the most efficient HHCB degradation due to the high production of ˙OH induced under UVC. Indirect photolysis contribution was observed, induced by ˙OH, CO3˙-, 3DOM*, and 1O2 to different extents depending on the light and matrix composition. The experiments led to the detection of transformation products: HHCB lactone, a well-known transformation product, and two other substances with proposed structures. This study provides a comprehensive identification of the processes involved in the direct and indirect photodegradation of HHCB, which could serve as the basis for evaluating and modeling the fate of HHCB in aquatic environments.
Collapse
Affiliation(s)
- Hatice Turan
- University of Pau and Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France.
| | - Mathieu Sebilo
- Sorbonne Université, CNRS, INRAE, IRD, UPD, UPEC, Institute of Ecology and Environmental Sciences - Paris, IEES, 75005 Paris, France
| | - Thierry Pigot
- University of Pau and Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France.
| | - Mathilde Monperrus
- University of Pau and Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600, Anglet, France.
| |
Collapse
|
2
|
Beltrán FJ, Chávez AM, Jiménez-López MA, Álvarez PM. Kinetic modelling of UV C and UV C/H 2O 2 oxidation of an aqueous mixture of antibiotics in a completely mixed batch photoreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55222-55238. [PMID: 39225925 DOI: 10.1007/s11356-024-34812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The removal kinetics of an aqueous mixture of thirteen antibiotics (i.e., ampicillin, cefuroxime, ciprofloxacin, flumequine, metronidazole, ofloxacin, oxytetracycline, sulfadimethoxine, sulfamethoxazole, sulfamethazine, tetracycline, trimethoprim and tylosin) by batch UVC and UVC/H2O2 processes has been modeled in this work. First, molar absorption coefficients (ε), direct quantum yields (Φ) and the rate constants of the reaction of antibiotics with hydroxyl radical (kHO•) (model inputs) were determined for each antibiotic and compared with literature data. The values of these parameters range from 0.3 to 21.8 mM-1 cm-1 for ε, < 0.01 to 67.8 mmol·E-1 for Φ and 3.8 × 109 to 1.7 × 1010 M-1 s-1 for kHO•. Second, a regression model was developed to compute the rate constants of the reactions of the antibiotics with singlet oxygen (k1O₂) from experimental data obtained in batch UVC experiments treating a mixture of the antibiotics. k1O₂ values in the 1-50 × 106 M-1 s-1 range were obtained for the antibiotics studied. Finally, a semi-empirical kinetic model comprising a set of ordinary differential equations was solved to simulate the evolution of the residual concentration of antibiotics and hydrogen peroxide (model outputs) in a completely mixed batch photoreactor. Model predictions were reasonably consistent with the experimental data. The kinetic model developed might be combined with computational fluid dynamics to predict process performance and energy consumption in UVC and UVC/H2O2 applications at full scale.
Collapse
Affiliation(s)
- Fernando J Beltrán
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Ana M Chávez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Miguel A Jiménez-López
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Pedro M Álvarez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
3
|
Li LP, Jin YC, Ren D, Wang JJ, Fang L, Li X, Zhang X, Cui DW, Chen X, Liu XH. Deciphering the photolysis products and biological concerns of triclosan under UVC and UVA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114998. [PMID: 37167739 DOI: 10.1016/j.ecoenv.2023.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Triclosan (TCS) is omnipresent in the environment and has drawn increasing attention due to its potential adverse effects on human health. Direct photolysis of TCS readily occurs, especially in the surface layers of waters that receive abundant ultraviolet radiation during the daytime. However, biological concerns and the identification of toxic products during TCS photolysis have been explored limitedly. Therefore, in the present work, the structural characterization of the photolysis products by UVC and UVA were performed based on the mass spectra and fragmental ions. The results displayed that TCS was more readily eliminated by UVC than UVA, and the product species were completely different when TCS was degraded by UVC and UVA, respectively. Two products, m/z 235 and m/z 252, were produced via reductive dechlorination and nucleophilic substitution with UVC, while three dioxin-like isomer products were generated by dechlorination, cyclization and hydroxylation. Furthermore, the results of biological concerns suggested that the elimination of TCS did not represent the disappearance of biological risks. Specifically, more hazardous and photolysis products were formed during TCS photolysis with ultraviolets. For instance, the dioxin-like isomer products were highly microtoxic and genotoxic, and mildly antiestrogenic. The positive findings highlighted the biological concerns of TCS photolysis by ultraviolet radiation in the aquatic environment.
Collapse
Affiliation(s)
- Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Yan-Chao Jin
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Jun-Jian Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le Fang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xin Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ding-Wei Cui
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xi Chen
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xin-Hui Liu
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Behling L, da Luz VC, Pasquali GDL, Bazoti SF, Dalla Rosa C, Pereira P. Ibuprofen removal from synthetic effluents using Electrocoagulation-Peroxidation (ECP). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:271. [PMID: 36607457 DOI: 10.1007/s10661-022-10879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Concerning water resources, several ordinances and legislation determine standards and conditions for the discharge of effluents into water bodies. However, several contaminants are not covered by these guidelines due to little knowledge of their long-term effects and because they are found in low concentrations. These contaminants are called emergent and this category includes drugs, such as anti-inflammatory drugs. The electrocoagulation process associated with advanced oxidation comes up as an alternative to conventional effluent treatment processes, and the objective of this study was to evaluate this process using scrap iron as sacrificial electrodes in the treatment of synthetic effluents containing ibuprofen. High-performance liquid chromatography was used to quantify the drug in synthetic effluents. The Central Rotational Composite Design 24 was used in an experimental design, considering independent variables the concentration of contaminants, applied current, the concentration of the primary oxidizing agent H2O2, and the reaction time. The optimized conditions determined by statistical analysis were drug concentration of 5 mg L-1, H2O2 concentration of 200 mg L-1, current of 5 A, and 150 min. The removals obtained under these conditions were higher than 92% in the aqueous phase, showing that electrocoagulation peroxidation technique has the potential to treat contaminants such as drugs present in effluents and waters.
Collapse
Affiliation(s)
- Laura Behling
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Vilson Conrado da Luz
- Environmental and Sanitary Engineering Department, Federal University of Fronteira Sul, ERS 135 -Km 72, No 200, PO Box 764, Erechim, RS, 99700-970, Brazil
| | | | - Suzana Fátima Bazoti
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Clarissa Dalla Rosa
- Post-Graduation Program in Science and Environmental Technology, Erechim, Brazil
| | - Paulo Pereira
- Environmental and Sanitary Engineering Department, Federal University of Fronteira Sul, ERS 135 -Km 72, No 200, PO Box 764, Erechim, RS, 99700-970, Brazil
| |
Collapse
|