1
|
Park H, Lee Y, Balaraju K, Kim J, Jeon Y. Characterization and Biocontrol Efficacy of Bacillus velezensis GYUN-1190 against Apple Bitter Rot. THE PLANT PATHOLOGY JOURNAL 2024; 40:681-695. [PMID: 39639671 PMCID: PMC11626033 DOI: 10.5423/ppj.oa.05.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The application of synthetic fungicides has resulted in environmental pollution and adverse effects on non-target species. To reduce the use of agrochemicals, crop disease management requires microbial biological control agents. Bacillus-related genera produce secondary metabolites to control fungal pathogens. Bacillus velezensis GYUN-1190, isolated from soil, showed antagonistic activity against Colletotrichum fructicola, the apple anthracnose pathogen. Volatile organic compounds and culture filtrate (CF) from GYUN-1190 inhibited C. fructicola growth in vitro, by 80.9% and 30.25%, respectively. The CF of GYUN-1190 inhibited pathogen spore germination more than cell suspensions at 10 8 cfu/ml. Furthermore, GYUN-1190 CF is effective in inhibiting C. fructicola mycelial growth in vitro, and it suppresses apple fruit bitter rot more effectively than GYUN-1190 cell suspensions and pyraclostrobin in planta. The mycelial growth of C. fructicola was completely inhibited 48 h after immersion into the CF, in compared with positive controls and GYUN-1190 cell suspensions. The genetic mechanism underlying the biocontrol features of GYUN-1190 was defined using its whole-genome sequence, which was closely compared to similar strains. It consisted of 4,240,653 bp with 45.9% GC content, with 4,142 coding sequences, 87 tRNA, and 28 rRNA genes. The genomic investigation found 14 putative secondary metabolite biosynthetic gene clusters. The investigation suggests that B. velezensis GYUN-1190 might be more effective than chemical fungicides and could address its potential as a biological control agent.
Collapse
Affiliation(s)
- Hyeonjin Park
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
2
|
Aphaiso P, Mahakhan P, Sawaengkaew J. Bacillus siamensis 3BS12-4 Extracellular Compounds as a Potential Biological Control Agent against Aspergillus flavus. J Microbiol Biotechnol 2024; 34:1671-1679. [PMID: 39081260 PMCID: PMC11380522 DOI: 10.4014/jmb.2402.02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, β-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.
Collapse
Affiliation(s)
- Patapee Aphaiso
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Pandey C, Prabha D, Negi YK, Maheshwari DK, Dheeman S, Gupta M. Macrolactin a mediated biocontrol of Fusarium oxysporum and Rhizoctonia solani infestation on Amaranthus hypochondriacus by Bacillus subtilis BS-58. Front Microbiol 2023; 14:1105849. [PMID: 36970695 PMCID: PMC10032343 DOI: 10.3389/fmicb.2023.1105849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Plant diseases are one of the main hurdles for successful crop production and sustainable agriculture development world-wide. Though several chemical measures are available to manage crop diseases, many of them have serious side effects on humans, animals and the environment. Therefore, the use of such chemicals must be limited by using effective and eco-friendly alternatives. In view of the same, we found a Bacillus subtilis BS-58 as a good antagonist towards the two most devastating phytopathogens, i.e., Fusarium oxysporum and Rhizoctonia solani. Both the pathogens attack several agricultural crops (including amaranth) and induce a variety of infections in them. The findings of scanning electron microscopy (SEM) in this study suggested that B. subtilis BS-58 could inhibit the growth of both the pathogenic fungi by various means such as perforation, cell wall lysis, and cytoplasmic disintegration in the fungal hyphae. Thin-layer chromatography, LC–MS and FT-IR data revealed the antifungal metabolite to be macrolactin A with a molecular weight of 402 Da. Presence of the mln gene in the bacterial genome further endorsed that the antifungal metabolite produced by BS-58 was macrolactin A. Pot trial conducted in the present study showed that seed treatment by BS-58 effectively reduced seedling mortality (54.00 and 43.76%) in amaranth, when grown in pathogen infested soil (F. oxysporum and R. solani, respectively), when compared to their respective negative controls. Data also revealed that the disease suppression ability of BS-58 was almost equivalent to the recommended fungicide, carbendazim. SEM analysis of roots of the seedlings recovered from pathogenic attack substantiated the hyphal disintegration by BS-58 and prevention of amaranth crop. The findings of this study conclude that macrolactin A produced by B. subtilis BS-58 is responsible for the inhibition of both the phytopathogens and the suppression of the diseases caused by them. Being native and target specific, such strains under suitable conditions, may result in ample production of antibiotic and better suppression of the disease.
Collapse
Affiliation(s)
- Chitra Pandey
- Department of Basic Sciences, College of Forestry (VCSG UUHF), Tehri Garhwal, Uttarakhand, India
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Deepti Prabha
- Department of Seed Science and Technology, School of Agriculture and Allied Sciences, HNB Garhwal University, Srinagar, Pauri Garhwal, Uttarakhand, India
| | - Yogesh Kumar Negi
- Department of Basic Sciences, College of Forestry (VCSG UUHF), Tehri Garhwal, Uttarakhand, India
- *Correspondence: Yogesh Kumar Negi,
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Shrivardhan Dheeman
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Monika Gupta
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
In Vitro Biological Control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, Producers of Antifungal Volatile Organic Compounds. Toxins (Basel) 2021; 13:toxins13090663. [PMID: 34564667 PMCID: PMC8471246 DOI: 10.3390/toxins13090663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a toxigenic fungal colonizer of fruits and cereals and may produce one of the most important mycotoxins from a food safety perspective, aflatoxins. Therefore, its growth and mycotoxin production should be effectively avoided to protect consumers' health. Among the safe and green antifungal strategies that can be applied in the field, biocontrol is a recent and emerging strategy that needs to be explored. Yeasts are normally good biocontrol candidates to minimize mold-related hazards and their modes of action are numerous, one of them being the production of volatile organic compounds (VOCs). To this end, the influence of VOCs produced by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793 on growth, expression of the regulatory gene of the aflatoxin pathway (aflR) and mycotoxin production by A. flavus for 21 days was assessed. The results showed that both yeasts, despite producing different kinds of VOCs, had a similar effect on inhibiting growth, mycotoxin biosynthetic gene expression and phenotypic toxin production overall at the mid-incubation period when their synthesis was the greatest. Based on the results, both yeast strains, H. opuntiae L479 and H. uvarum L793, are potentially suitable as a biopreservative agents for inhibiting the growth of A. flavus and reducing aflatoxin accumulation.
Collapse
|
6
|
Soussi S, Essid R, Karkouch I, Saad H, Bachkouel S, Aouani E, Limam F, Tabbene O. Effect of Lipopeptide-Loaded Chitosan Nanoparticles on Candida albicans Adhesion and on the Growth of Leishmania major. Appl Biochem Biotechnol 2021; 193:3732-3752. [PMID: 34398423 DOI: 10.1007/s12010-021-03621-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Cyclic lipopeptides produced by Bacillus species exhibit interesting therapeutic potential. However, their clinical use remains limited due to their low stability, undesirable interactions with host macromolecules, and their potential toxicity to mammalian cells. The present work aims to develop suitable lipopeptide-loaded chitosan nanoparticles with improved biological properties and reduced toxicity. Surfactin and bacillomycin D lipopeptides produced by Bacillus amyloliquefaciens B84 strain were loaded onto chitosan nanoparticles by ionotropic gelation process. Nanoformulated lipopeptides exhibit an average size of 569 nm, a zeta potential range of 38.8 mV, and encapsulation efficiency (EE) of 85.58%. Treatment of Candida (C.) albicans cells with encapsulated lipopeptides induced anti-adhesive activity of 81.17% and decreased cell surface hydrophobicity (CSH) by 25.53% at 2000 µg/mL. Nanoformulated lipopeptides also induced antileishmanial activity against Leishmania (L.) major promastigote and amastigote forms at respective IC50 values of 14.37 µg/mL and 22.45 µg/mL. Nanoencapsulated lipopeptides exerted low cytotoxicity towards human erythrocytes and Raw 264.7 macrophage cell line with respective HC50 and LC50 values of 770 µg/mL and 234.56 µg/mL. Nanoencapsulated lipopeptides could be used as a potential delivery system of lipopeptides to improve their anti-adhesive effect against C. albicans cells colonizing medical devices and their anti-infectious activity against leishmania.
Collapse
Affiliation(s)
- Siwar Soussi
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia.,Faculté Des Sciences de Bizerte, Université de Carthage, Tunis, Tunisia
| | - Rym Essid
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia
| | - Ines Karkouch
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia
| | - Houda Saad
- Laboratoire Des Matériaux Composites Et Minéraux Argileux, Centre National Des Recherches en Sciences Des Matériaux, BP-73, 8027, Soliman, Tunisia
| | - Sarra Bachkouel
- Centre de Biotechnologie de Borj-Cedria (CBBC), Espace D'Appui À La Recherche Et de Transfert Technologique, BP-901, 2050, Hammam-lif, Tunisia
| | - Ezzedine Aouani
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia
| | - Ferid Limam
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia
| | - Olfa Tabbene
- Laboratoire Des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria (CBBC), BP-901, 2050, Hammam-lif, Tunisia.
| |
Collapse
|
7
|
Moura GGDD, Barros AVD, Machado F, Martins AD, Silva CMD, Durango LGC, Forim M, Alves E, Pasqual M, Doria J. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Microbiol Res 2021; 251:126793. [PMID: 34325193 DOI: 10.1016/j.micres.2021.126793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Botrytis cinerea causes the gray mold disease in a wide range of plant hosts, especially in post-harvest periods. The control of this phytopathogen has been accomplished through the application of fungicides. However, this practice can cause environmental problems and increase fruit production costs. In addition, this fungus species has developed resistance to conventional synthetic fungicides. In this context, plant growth-promoting bacteria have shown potential for application in agricultural production because they are able to stimulate plant growth through different mechanisms, including the biological control of phytopathogens (indirect growth promotion mechanism). The aim of this work was to evaluate in vitro and in fruits the potential for indirect plant growth-promotion of bacteria isolated from strawberry leaves and roots. Dual plate method and inverted plate method were used to verify the ability of controlling in vitro the growth of Botrytis cinerea via the production of diffusible and volatile antifungal compounds, respectively. The effect of six bacterial isolates that showed greater potential for biological control in vitro was evaluated by scanning electron microscopy. Antifungal compounds produced by these bacterial isolates were identified by liquid chromatography coupled with mass spectrometry. Six bacterial strains were tested on strawberry pseudofruits. Five selected strains belong to the genus Bacillus and one to the genus Pantoea sp. Selected strains were able to inhibit more than 80 % of the mycelial growth of B. cinerea by the production of diffusible compounds and 90 % by volatile antifungal compounds production. Scanning electron microscopy showed the intense degradation of fungal hyphae caused by the presence of all bacterial strains. Bioactive compounds (salycilamide, maculosin, herniarin, lauroyl diethanolamide, baptifoline, undecanedioic acid, botrydial, 8 3-butylidene-7-hydroxyphthalide and N-(3-oxo-henoyl)-homoserine lactone) were obtained from liquid culture of these strains and extraction with ethyl acetate. All six isolates tested in vivo reduced the incidence of gray mold in strawberry pseudofruits in postharvest. It is concluded that isolates 26, 29, 65, 69, 132 (Bacillus sp.) and MQT16M1 (Pantoea sp.) have potential application for the biological control of Botrytis cinerea in strawberry via the production of diffusible and volatile antifungal compounds.
Collapse
Affiliation(s)
| | | | - Franklin Machado
- Phytopathology Department, Federal University of Viçosa, Minas Gerais, Brazil
| | | | | | | | - Moacir Forim
- Chemistry Department, Federal University of São Carlos, São Paulo, Brazil
| | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras, Minas Gerais, Brazil
| | - Moacir Pasqual
- Agriculture Department, Federal University of Lavras, Minas Gerais, Brazil
| | - Joyce Doria
- Agriculture Department, Federal University of Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Yang K, Geng Q, Song F, He X, Hu T, Wang S, Tian J. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus. Int J Mol Sci 2020; 21:E6994. [PMID: 32977505 PMCID: PMC7583960 DOI: 10.3390/ijms21196994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) have always been regarded as the most effective carcinogens, posing a great threat to agriculture, food safety, and human health. Aspergillus flavus is the major producer of aflatoxin contamination in crops. The prevention and control of A. flavus and aflatoxin continues to be a global problem. In this study, we demonstrated that the cell-free culture filtrate of Aspergillus oryzae and a non-aflatoxigenic A. flavus can effectively inhibit the production of AFB1 and the growth and reproduction of A. flavus, indicating that both of the non-aflatoxigenic Aspergillus strains secrete inhibitory compounds. Further transcriptome sequencing was performed to analyze the inhibitory mechanism of A. flavus treated with fermenting cultures, and the results revealed that genes involved in the AF biosynthesis pathway and other biosynthetic gene clusters were significantly downregulated, which might be caused by the reduced expression of specific regulators, such as AflS, FarB, and MtfA. The WGCNA results further revealed that genes involved in the TCA cycle and glycolysis were potentially involved in aflatoxin biosynthesis. Our comparative transcriptomics also revealed that two conidia transcriptional factors, brlA and abaA, were found to be significantly downregulated, which might lead to the downregulation of conidiation-specific genes, such as the conidial hydrophobins genes rodA and rodB. In summary, our research provides new insights for the molecular mechanism of controlling AF synthesis to control the proliferation of A. flavus and AF pollution.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingru Geng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Fengqin Song
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Xiaona He
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| | - Tianran Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (K.Y.); (Q.G.); (F.S.); (X.H.)
| |
Collapse
|
9
|
Liu Z, Zhou J, Li Y, Wen J, Wang R. Bacterial endophytes from Lycoris radiata promote the accumulation of Amaryllidaceae alkaloids. Microbiol Res 2020; 239:126501. [PMID: 32585579 DOI: 10.1016/j.micres.2020.126501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 11/28/2022]
Abstract
Lycoris radiata is the major source of Amaryllidaceae alkaloids, having various medicinal activities. However, the low content of these alkaloids in planta limits their pharmaceutical development and utilization. In this study, the ability of bacterial endophytes to enhance the accumulation of five important Amaryllidaceae alkaloids was investigated. A total of 188 bacterial endophytes were isolated from L. radiata and their composition and diversity were analyzed. Fourteen ones were demonstrated to significantly increase the concentration of the alkaloids of interest in different organs, up to 11.1-fold over the control level, with no adverse influence on the plant growth. An additional 3 bacterial endophytes were found to significantly increase the dry weight of L. radiata with no adverse influence on the concentration of the alkaloids in planta, so the total yield of alkaloids in planta was increased up to 2.4-fold over the control level. Considering the plant growth-promoting abilities of these bacterial endophytes, it is speculated that the indole-3-acetic acid and siderophore secreted by them, combined with their nitrogen fixation ability, may contribute to the enhanced plant growth and the increased alkaloid accumulation in L. radiata. To our knowledge, this work is firstly defining the diversity of culturable bacterial endophytes in L. radiata and determining which species promoted the accumulation of Amaryllidaceae alkaloids. It provides several valuable bacterial inoculants that can be further applied to improve alkaloid production in L. radiata and broadens our understanding of the interactions between a medicinal plant and the bacterial endophytes.
Collapse
Affiliation(s)
- Zhilin Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yikui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Jian Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Wang M, Ma Y, Mou H, Kong Q. Bacillomycin D lipopeptides from marine
Bacillus megaterium
as antimicrobial and preservative agents for large yellow croaker,
Larimichthys crocea. J Food Saf 2019. [DOI: 10.1111/jfs.12652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mengjuan Wang
- Division of Applied MicrobiologyCollege of Food Science and Engineering, Ocean University of China Qingdao Shandong China
| | - Yunxiao Ma
- Division of Applied MicrobiologyCollege of Food Science and Engineering, Ocean University of China Qingdao Shandong China
| | - Haijin Mou
- Division of Applied MicrobiologyCollege of Food Science and Engineering, Ocean University of China Qingdao Shandong China
| | - Qing Kong
- Division of Applied MicrobiologyCollege of Food Science and Engineering, Ocean University of China Qingdao Shandong China
| |
Collapse
|
11
|
Isler Ceyhan D, Celekli A, Can C. Relationship between soil composition, diversity and antifungal properties of Bacillus spp. isolated from southeastern Anatolia. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1559095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Derya Isler Ceyhan
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Abuzer Celekli
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Canan Can
- Biology Department, Science and Letter Faculty, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
12
|
Liang Y, Kong Q, Yao Y, Xu S, Xie X. Fusion expression and anti-Aspergillus flavus activity of a novel inhibitory protein DN-AflR. Int J Food Microbiol 2018; 290:184-192. [PMID: 30347354 DOI: 10.1016/j.ijfoodmicro.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023]
Abstract
The regulatory gene (aflR) encodes AflR, a positive regulator of transcriptional pathway that activates aflatoxin biosynthesis. It has been demonstrated in our laboratory that L-Asp-L-Asn (DN) extracted from Bacillus megaterium inhibited the growth of Aspergillus flavus. We fused gene encoding DN with the gene encoding specific dinuclear zinc finger cluster protein of AflR, then fusion protein competed with the AflS-AflR complex for the AflR binding site and significantly improved anti-A. flavus activity (growth of A. flavus and biosynthesis of aflatoxin B1) of DN. The fusion gene dn-aflR was cloned into pET32a and recombinant plasmid was introduced into Escherichia coli BL21. The highest expression was observed after 10 h induction and fusion protein was purified by affinity chromatography column. Compared with DN, the novel fusion protein DN-AflR significantly inhibited the growth of A. flavus and biosynthesis of aflatoxin B1 (P < 0.05). This study promoted the use of competitive inhibition of fusion proteins to reduce the expression of regulatory genes in the biosynthetic pathway of aflatoxin. Moreover, it provided more supports for deep research and industrialization of such novel anti-A. flavus bio-inhibitors and biological control of microbial contamination.
Collapse
Affiliation(s)
- Yuan Liang
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| | - Yao Yao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shujing Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xie
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
13
|
Shakeel Q, Lyu A, Zhang J, Wu M, Li G, Hsiang T, Yang L. Biocontrol of Aspergillus flavus on Peanut Kernels Using Streptomyces yanglinensis 3-10. Front Microbiol 2018; 9:1049. [PMID: 29875755 PMCID: PMC5974058 DOI: 10.3389/fmicb.2018.01049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
The bacterium, Streptomyces yanglinensis 3-10, shows promise in the control of many phytopathogenic fungi. In this study, S. yanglinensis and its antifungal substances, culture filtrate (CF3-10) and crude extracts (CE3-10), were evaluated for their activity in reducing growth and aflatoxin AFB1 production by Aspergillus flavus, both in vitro and in vivo on peanut kernels. The results showed that in dual culture conditions, S. yanglinensis reduced the mycelial growth of A. flavus about 41% as compared to control. The mycelial growth of A. flavus was completely inhibited on potato dextrose agar amended with CF3-10 at 3% (v/v) or CE3-10 at 2.5 μg/ml. In liquid culture experiments, growth inhibition ranged from 32.3 to 91.9% with reduction in AFB1 production ranging from 46.4 to 93.4% using different concentrations of CF3-10 or CE3-10. For in vivo assays, CF3-10 at 0.133 ml/g (v/w) or CE3-10 at 13.3 μg/g (w/w) reduced the postharvest decay of peanut kernels by inhibiting visible growth of A. flavus leading to an 89.4 or 88.1% reduction in AFB1 detected, respectively. Compared with the controls, CF3-10 and CE3-10 in A. flavus shake culture significantly reduced expression levels of two AFB1 biosynthesis genes, aflR and aflS. Furthermore, electron microscopy observation showed that CF3-10 (2%, v/v) caused hyphae growth to be abnormal and shriveled, cell organelles to degenerate and collapse, large vacuoles to appear. These results suggest that S. yanglinensis 3-10 has potential as an alternative to chemical fungicides in protecting peanut kernels and other agricultural commodities against postharvest decay from A. flavus.
Collapse
Affiliation(s)
- Qaiser Shakeel
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Ang Lyu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Mannaa M, Kim KD. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II. MYCOBIOLOGY 2018; 46:52-63. [PMID: 29998033 PMCID: PMC6037079 DOI: 10.1080/12298093.2018.1454015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 05/13/2023]
Abstract
In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
González Pereyra M, Martínez M, Petroselli G, Erra Balsells R, Cavaglieri L. Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Kurata A, Yamaura Y, Tanaka T, Kato C, Nakasone K, Kishimoto N. Antifungal peptidic compound from the deep-sea bacterium Aneurinibacillus sp. YR247. World J Microbiol Biotechnol 2017; 33:73. [PMID: 28299556 PMCID: PMC5352791 DOI: 10.1007/s11274-017-2239-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/05/2017] [Indexed: 12/04/2022]
Abstract
Aneurinibacillus: sp. YR247 was newly isolated from the deep-sea sediment inside the Calyptogena community at a depth of 1171 m in Sagami Bay. The strain exhibited antifungal activity against the filamentous fungus Aspergillus brasiliensis NBRC9455. A crude extract prepared from the YR247 cells by ethanol extraction exhibited broad antimicrobial activities. The antifungal compound is stable at 4-70 °C and pH 2.0-12.0. After treatment with proteinase K, the antifungal activity was not detected, indicating that the antifungal compound of strain YR247 is a peptidic compound. Electrospray ionization mass spectrometry of the purified antifungal compound indicated that the peptidic compound has an average molecular weight of 1167.9. The molecular weight of the antifungal compound from strain YR247 is different from those of antimicrobial peptides produced by the related Aneurinibacillus and Bacillus bacteria. The antifungal peptidic compound from the deep-sea bacterium Aneurinibacillus sp. YR247 may be useful as a biocontrol agent.
Collapse
Affiliation(s)
- Atsushi Kurata
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan.
| | - Yuto Yamaura
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Takumi Tanaka
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Kaoru Nakasone
- Faculty of Engineering, Kindai University, 1 Takaya Umenobe, Higashi-Hiroshima City, Hiroshima, 739-2116, Japan
| | - Noriaki Kishimoto
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara, 631-8505, Japan
| |
Collapse
|
17
|
|
18
|
Perez KJ, Viana JDS, Lopes FC, Pereira JQ, Dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A, Nardi RMD. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides. Front Microbiol 2017; 8:61. [PMID: 28197131 PMCID: PMC5281586 DOI: 10.3389/fmicb.2017.00061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
Abstract
Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances.
Collapse
Affiliation(s)
- Karla J Perez
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Jaime Dos Santos Viana
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fernanda C Lopes
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Jamile Q Pereira
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Daniel M Dos Santos
- Núcleo de Biomoléculas, Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Jamil S Oliveira
- Núcleo de Biomoléculas, Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Renata V Velho
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Silvia M Crispim
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Jacques R Nicoli
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Regina M D Nardi
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
19
|
Zhao X, Zhou Z, Han Y. Antifungal Effects of Lipopeptide Produced by <i>Bacillus amyloliquefaciens</i> BH072. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.89022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Veras FF, Correa APF, Welke JE, Brandelli A. Inhibition of mycotoxin-producing fungi by Bacillus strains isolated from fish intestines. Int J Food Microbiol 2016; 238:23-32. [PMID: 27589021 DOI: 10.1016/j.ijfoodmicro.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
Bacillus strains isolated from the aquatic environment of the Brazilian Amazon region were tested for their activity against mycotoxigenic fungi. All tested bacteria showed antifungal activity, inhibiting at least 7 indicator fungi. Four Bacillus strains showing promising antifungal results were subsequently evaluated for their activity in reducing mycelial growth rate, sporulation, spore germination percentage, and mycotoxin production. Bacillus sp. P1 and Bacillus sp. P11 had a remarkable antifungal effect on toxigenic fungi. Washed bacterial cell suspension of strains P1 and P11 (107CFU/ml) reduced by >70% the fungal colony diameters, including a complete inhibition of ochratoxin A (OTA) producing Aspergillus spp. Significant reduction of growth rate, sporulation and spore germination were also observed. The bacteria influenced the production of mycotoxins, causing a reduction around 99 and 97% in AFB1 and OTA concentration, respectively. Chromatographic analysis revealed the presence of lipopeptides (iturin A and surfactin isomers) in butanol extracts of cell-free supernatants and cell pellets of strains P1 and P11. Furthermore, antifungal activity of these extracts was confirmed against A. flavus A12 and A. carbonarius ITAL293, producers of AFB1 and OTA, respectively. These bacterial strains could be promising biocontrol agents against toxigenic fungi.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Ana Paula Folmer Correa
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
| |
Collapse
|
21
|
Chauhan AK, Maheshwari DK, Kim K, Bajpai VK. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 2016; 62:880-892. [PMID: 27604298 DOI: 10.1139/cjm-2016-0249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus strains were isolated from termitarium soil and screened for their antifungal activity through the production of diffusible and volatile metabolites. Further, the bacterial strains that showed antifungal activity were evaluated for their biocontrol potential on the basis of their plant-growth-promoting attributes. Termitarium-inhabiting Bacillus strains TSH42 and TSH77 significantly reduced the growth of pathogenic fungus Fusarium solani, controlled the symptoms of rhizome rot in turmeric (Curcuma longa L.), and demonstrated various plant-growth-promoting traits in different in vitro assays. On the basis of morphological, physiological, biochemical, and 16S rDNA characteristics, isolates TSH42 and TSH77 were identified as Bacillus endophyticus (KT379993) and Bacillus cereus (KT379994), respectively. Through liquid chromatography - mass spectrometry analysis, acidified cell-free culture filtrate (CFCF) of B. cereus TSH77 was shown to contain surfactin and fengycin, while CFCF of B. endophyticus TSH42 contained iturin in addition to surfactin and fengycin. Treatment of the turmeric (C. longa L.) plants with TSH42 and TSH77 significantly reduced the percentage incidence of rhizome rot disease caused by F. solani. The same treatment also increased the fresh rhizome biomass and plant growth in greenhouse conditions.
Collapse
Affiliation(s)
- Ankit Kumar Chauhan
- a Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
| | - Dinesh Kumar Maheshwari
- a Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
| | - Kangmin Kim
- b Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, 79 Gobong-ro, Iksan-si-570-752, Joellabuk-do (Jeonbuk), Republic of Korea
| | - Vivek K Bajpai
- c Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| |
Collapse
|
22
|
Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Inès M, Dhouha G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015; 71:100-12. [PMID: 26189973 DOI: 10.1016/j.peptides.2015.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022]
Abstract
Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi and yeast. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin and fengycin of Bacillus subtilis are among the most studied lipopeptides. This review will present the main factors encountering lipopeptides production along with the techniques developed for their extraction and purification. Moreover, we will discuss their ability to form pores and destabilize biological membrane permitting their use as antimicrobial, hemolytic and antitumor agents. These open great potential applications in biomediacal, pharmaceutic and agriculture fields.
Collapse
Affiliation(s)
- Mnif Inès
- Higher Institute of Biotechnology, Tunisia; Unit Enzymes and Bioconversion, National School of Engineers, Tunisia.
| | - Ghribi Dhouha
- Higher Institute of Biotechnology, Tunisia; Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| |
Collapse
|
24
|
Liu C, Sheng J, Chen L, Zheng Y, Lee DYW, Yang Y, Xu M, Shen L. Biocontrol Activity of Bacillus subtilis Isolated from Agaricus bisporus Mushroom Compost Against Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6009-6018. [PMID: 26050784 DOI: 10.1021/acs.jafc.5b02218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacillus subtilis strain B154, isolated from Agaricus bisporus mushroom compost infected by red bread mold, exhibited antagonistic activities against Neurospora sitophila. Antifungal activity against phytopathogenic fungi was also observed. The maximum antifungal activity was reached during the stationary phase. This antifungal activity was stable over a wide pH and temperature range and was not affected by proteases. Assay of antifungal activity in vitro indicated that a purified antifungal substance could strongly inhibit mycelia growth and spore germination of N. sitophila. In addition, treatment with strain B154 in A. bisporus mushroom compost infected with N. sitophila significantly increased the yield of bisporus mushrooms. Ultraviolet scan spectroscopy, tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-associated laser desorption ionization time-of-flight mass spectrometry, and electrospray ionization tandem mass spectrometry analyses revealed a molecular weight consistent with 1498.7633 Da. The antifungal compound might belong to a new type of lipopeptide fengycin.
Collapse
Affiliation(s)
- Can Liu
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
- §Bioorganic and Natural Products Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Jiping Sheng
- ‡School of Agricultural Economics and Rural Development, Renmin University of China, 59 Zhong Guancun Street, Haidian District, Beijing 100872, China
- §Bioorganic and Natural Products Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Lin Chen
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yanyan Zheng
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - David Yue Wei Lee
- §Bioorganic and Natural Products Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Yang Yang
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Mingshuang Xu
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lin Shen
- †College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
25
|
Yan QH, Zhou JX, Li HZ, Zhi QQ, Zhou XP, He ZM. Coexistence of and interaction relationships between an aflatoxin-producing fungus and a bacterium. Fungal Biol 2015; 119:605-14. [DOI: 10.1016/j.funbio.2015.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/01/2022]
|
26
|
Ben Abdallah D, Frikha-Gargouri O, Tounsi S. Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 2015; 119:196-207. [PMID: 25764969 DOI: 10.1111/jam.12797] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
AIMS A Bacillus amyloliquefaciens strain, designated 32a, was used to identify new compounds active against Agrobacterium tumefaciens and to evaluate their efficiency to control crown gall on carrot discs. METHODS AND RESULTS Based on PCR-assays, four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A, bacillomycin D and fengycin. Mass spectrometry analysis of culture supernatant led to the identification of these secondary metabolites, except bacillomycin, with heterogeneous mixture of homologues. Antimicrobial assays using lipopeptides-enriched extract showed a strong inhibitory activity against several bacterial and fungal strains, including Ag. tumefaciens. Biological control assays on carrot discs using both 32a spores and extract resulted in significant protection against crown gall disease, similar to that provided by the reference antagonistic strain Agrobacterium rhizogenes K1026. CONCLUSIONS In contrast to all active compounds against Ag. tumefaciens that are of proteinaceous nature, this work enables for the first time to correlate the strong protective effect of B. amyloliquefaciens strain 32a towards crown gall disease with the production of a mixture of lipopeptides. SIGNIFICANCE AND IMPACT OF THE STUDY The findings could be useful for growers and nursery men who are particularly interested in the biocontrol of the crown gall disease.
Collapse
Affiliation(s)
- D Ben Abdallah
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - O Frikha-Gargouri
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - S Tounsi
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
27
|
Shi L, Liang Z, Li J, Hao J, Xu Y, Huang K, Tian J, He X, Xu W. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1879-1885. [PMID: 24293396 DOI: 10.1002/jsfa.6507] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/14/2013] [Accepted: 11/30/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species. In this study a strain of Bacillus subtilis was tested for its effects on OTA-producing Aspergillus and OTA degradation. The mechanisms of the effects were also investigated. RESULTS A strain of Bacillus spp. isolated from fresh elk droppings was screened out using the methods described by Guan et al. (Int J Mol Sci 9:1489-1503 (2008)). The 16S rRNA gene sequence suggested that it was B. subtilis CW 14. It could inhibit the growth of the OTA-producing species Aspergillus ochraceus 3.4412 and Aspergillus carbonarius, with inhibition rates of 33.0 and 33.3% respectively. At 6 µg mL(-1) OTA, both viable and autoclaved (121 °C, 20 min) cells of CW 14 bound more than 60% of OTA. In addition, OTA was degraded by the cell-free supernatant of CW 14. By high-performance liquid chromatography, the cell-free supernatant degraded 97.6% of OTA after 24 h of incubation at 30 °C, and no degradation products were produced. The fastest degradation occurred during the first 2 h. In 3 g samples of contaminated maize, 47.1% of OTA was degraded by 50 mL inocula of overnight cultures of CW 14. CONCLUSION These findings indicated that B. subtilis CW 14 could both prevent OTA contamination and degrade OTA in crops.
Collapse
Affiliation(s)
- Lei Shi
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yuan J, Zhang F, Wu Y, Zhang J, Raza W, Shen Q, Huang Q. Recovery of several cell pellet-associated antibiotics produced by Bacillus amyloliquefaciens
NJN-6. Lett Appl Microbiol 2014; 59:169-76. [DOI: 10.1111/lam.12260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 11/29/2022]
Affiliation(s)
- J. Yuan
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - F. Zhang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - Y. Wu
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - J. Zhang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - W. Raza
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - Q. Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| | - Q. Huang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River; Jiangsu Key Lab for Organic Solid Waste Utilization; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
29
|
The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Appl Microbiol Biotechnol 2014; 98:5161-72. [PMID: 24652062 DOI: 10.1007/s00253-014-5632-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.
Collapse
|
30
|
Tang Y, Gan M, Xie Y, Li X, Chen L. Fast screening of bacterial suspension culture conditions on chips. LAB ON A CHIP 2014; 14:1162-1167. [PMID: 24477551 DOI: 10.1039/c3lc51332g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Culture conditions including pH, nutrient concentration and temperature strongly influence the properties of a microbial strain by affecting many factors such as the microbial membrane and metabolism. We present a microfluidic chip for screening pH and nutrient content with a concentration gradient generator connected to eight parallel suspension culture loops and another chip for the screening of temperature with four different temperature zones under suspension culture loops. Bacteria grow much faster on chips than in test tubes, and yet interestingly, on-chip screening of culture conditions for E. coli yields results similar to those from a culture in test tubes, demonstrating the validity of the on-chip screening approach. The microfluidic chips were applied to study the growth conditions of two wild type Bacillus subtilis strains isolated from polluted water. The on-chip screening experiments show advantages of nanoliter scale screening units, high-throughput and requiring only one-fourth of the time.
Collapse
Affiliation(s)
- Yunfang Tang
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, PR China.
| | | | | | | | | |
Collapse
|
31
|
Ma J, Mo H, Chen Y, Ding D, Hu L. Inhibition of aflatoxin synthesis in Aspergillus flavus by three structurally modified lentinans. Int J Mol Sci 2014; 15:3860-70. [PMID: 24599078 PMCID: PMC3975372 DOI: 10.3390/ijms15033860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022] Open
Abstract
The chemical properties of β-glucans leading to their inhibition on aflatoxin (AF) production by Aspergillus flavus remain unclear. In this study, structurally modified lentinan derivatives were prepared by carboxymethylation, sulfation, and phosphorylation to explore their inhibition activity to AF synthesis. The results demonstrated that inhibitory activity of lentinan decreased at higher or lower concentrations than 200 μg/mL. Compared with lentinan, the sulphated derivatives only performed a reduced optimal inhibition rate at a higher concentration. The phosphorylated derivatives achieved complete inhibition of AF production at 50 μg/mL, but the inhibitory activity was attenuated with an increase of concentration. The minimum concentration of carboxymethylated derivatives to completely inhibit AF synthesis was the same as that of the original lentinan, whereas their inhibition activity was not reduced at the increasing concentration. RT-PCR analyses were conducted to understand the effects of lentinan and its carboxymethylated derivatives on the transcription of certain genes associated with AF biosynthesis. The results showed that lentinan delayed the transcription of aflQ, whereas its carboxymethylated derivatives promoted the transcriptions of all the tested genes. Our results revealed that some chemical group features apart from the β-bond could play the vital role in the prevention of AF formation by polysaccharide, and highlighted the structural modifications which could promote its practicability in the control of aflatoxin contamination.
Collapse
Affiliation(s)
- Jinyou Ma
- Department of Food Science, Henan Institute of Science & Technology, Xinxiang 453003, Henan, China.
| | - Haizhen Mo
- Department of Food Science, Henan Institute of Science & Technology, Xinxiang 453003, Henan, China.
| | - Ying Chen
- Department of Food Science, Henan Institute of Science & Technology, Xinxiang 453003, Henan, China.
| | - Ding Ding
- Department of Food Science, Northwest A&F University, Yangling 712100, Shannxi, China.
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science & Technology, Xinxiang 453003, Henan, China.
| |
Collapse
|
32
|
Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Identification and characterization of antifungal active substances of Streptomyces hygroscopicus BS-112. World J Microbiol Biotechnol 2013; 29:1443-52. [PMID: 23468248 DOI: 10.1007/s11274-013-1307-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
An antifungal Actinomyces BS-112 strain, with Aspergillus flavus as the target pathogen, was isolated from soil in the forest land of Mountain Tai. This strain showed a strong antagonistic activity against various mold fungi in food and feed. Strain BS-112 was identified as Streptomyces hygroscopicus based on its morphologic, cultural, physiological, biochemical characteristics, cell wall components and 16S rDNA sequence. Four active components were separated and purified from strain BS-112. These four antifungal components were identified as tetrins A and B and tetramycins A and B using spectroscopic analysis including mass spectrometry and nuclear magnetic resonance spectroscopy. Tetrins A and B and tetramycins A and B strongly inhibited the growth of A. flavus, A. alutaceus, A. niger, and A. fumigatus in vitro.
Collapse
|
34
|
Yan S, Liang Y, Zhang J, Liu CM. Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiol 2012; 12:106. [PMID: 22694821 PMCID: PMC3412747 DOI: 10.1186/1471-2180-12-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Aflatoxins (AFs) are highly carcinogenic compounds produced by Aspergillus species in seeds with high lipid and protein contents. It has been known for over 30 years that peptone is not conducive for AF productions, although reasons for this remain unknown. RESULTS In this study, we showed that when Aspergillus flavus was grown in peptone-containing media, higher initial spore densities inhibited AF biosynthesis, but promoted mycelial growth; while in glucose-containing media, more AFs were produced when initial spore densities were increased. This phenomenon was also observed in other AF-producing strains including A. parasiticus and A. nomius. Higher peptone concentrations led to inhibited AF production, even in culture with a low spore density. High peptone concentrations did however promote mycelial growth. Spent medium experiments showed that the inhibited AF production in peptone media was regulated in a cell-autonomous manner. mRNA expression analyses showed that both regulatory and AF biosynthesis genes were repressed in mycelia cultured with high initial spore densities. Metabolomic studies revealed that, in addition to inhibited AF biosynthesis, mycelia grown in peptone media with a high initial spore density showed suppressed fatty acid biosynthesis, reduced tricarboxylic acid (TCA) cycle intermediates, and increased pentose phosphate pathway products. Additions of TCA cycle intermediates had no effect on AF biosynthesis, suggesting the inhibited AF biosynthesis was not caused by depleted TCA cycle intermediates. CONCLUSIONS We here demonstrate that Aspergillus species grown in media with peptone as the sole carbon source are able to sense their own population densities and peptone concentrations to switch between rapid growth and AF production. This switching ability may offer Aspergillus species a competition advantage in natural ecosystems, producing AFs only when self-population is low and food is scarce.
Collapse
Affiliation(s)
- Shijuan Yan
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Yating Liang
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Jindan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| |
Collapse
|
35
|
Velho RV, Medina LFC, Segalin J, Brandelli A. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol (Praha) 2011; 56:297-303. [DOI: 10.1007/s12223-011-0056-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/28/2011] [Indexed: 11/24/2022]
|
36
|
Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0638-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: In vitro and in vivo experiments. J Microbiol 2009; 47:385-92. [DOI: 10.1007/s12275-009-0018-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|