1
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024; 62:5073-5091. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
2
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Zhou GF, Yang L, Zhang SH, Wang Y, Yang Y, Xu R, Zhao X, Nie D, Shan J, Cui CB, Li CW. Surfactin isoforms isolated from a mushroom derived Bacillus halotolerans DMG-7-2. Nat Prod Res 2021; 36:5222-5227. [PMID: 33977824 DOI: 10.1080/14786419.2021.1926457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new iso-C14 [Val2, Val7] surfactin isoform (1) together with eight known ones (2-9), was isolated from the culture of a mushroom derived bacterium, Bacillus halotolerans DMG-7-2. The structures of them were mainly elucidated by NMR and MS data, and the NMR data of 5 also was reported for the first time. The absolute configuration of 1 was determined by Marfey's analysis (for amino acid residues) and the 13C NMR calculation of the two plausible epimers of 1 (for fatty acid). Compounds 1-9 showed moderate cytotoxicity against two human cancer cell lines (A549, MCF-7) and mice microglial BV2 cells, the IC50 values ranged from 8.91 to 33.00 µM, and the IC50 values of the positive control 5-FU were 99.94, 71.49 and 0.12 µM, respectively.
Collapse
Affiliation(s)
- Guo-Feng Zhou
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Lin Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Shu-Hua Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Yi Wang
- Ministry of Education Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Yu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Rui Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Xue Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Dan Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Junjie Shan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Cheng-Bin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Chang-Wei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| |
Collapse
|
4
|
Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization. Front Microbiol 2017; 8:1973. [PMID: 29075242 PMCID: PMC5641556 DOI: 10.3389/fmicb.2017.01973] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (ΔsrfAB) was constructed. The ΔsrfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while ΔsrfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that ΔsrfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med Res Rev 2014; 36:4-31. [DOI: 10.1002/med.21321] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - John C. Vederas
- Department of Chemistry; University of Alberta; Alberta Canada
| |
Collapse
|
6
|
Seydlová G, Fišer R, Cabala R, Kozlík P, Svobodová J, Pátek M. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2370-8. [PMID: 23845875 DOI: 10.1016/j.bbamem.2013.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Surfactin is a cyclic lipopeptide antibiotic that disturbs the integrity of the cytoplasmic membrane. In this study, the role of membrane lipids in the adaptation and possible surfactin tolerance of the surfactin producer Bacillus subtilis ATCC 21332 was investigated. During a 1-day cultivation, the phospholipids of the cell membrane were analyzed at the selected time points, which covered both the early and late stationary phases of growth, when surfactin concentration in the medium gradually rose from 2 to 84μmol·l(-1). During this time period, the phospholipid composition of the surfactin producer's membrane (Sf(+)) was compared to that of its non-producing mutant (Sf(-)). Substantial modifications of the polar head group region in response to the presence of surfactin were found, while the fatty acid content remained unaffected. Simultaneously with surfactin production, a progressive accumulation up to 22% of the stress phospholipid cardiolipin was determined in the Sf(+) membrane, whereas the proportion of phosphatidylethanolamine remained constant. At 24h, cardiolipin was found to be the second major phospholipid of the membrane. In parallel, the Laurdan generalized polarization reported an increasing rigidity of the lipid bilayer. We concluded that an enhanced level of cardiolipin is responsible for the membrane rigidification that hinders the fluidizing effect of surfactin. At the same time cardiolipin, due to its negative charge, may also prevent the surfactin-membrane interaction or surfactin pore formation activity.
Collapse
Affiliation(s)
- Gabriela Seydlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|