1
|
Liu Z, Han L, Zhang X, Chen S, Wang X, Fang H. Core bacteria carrying the genes associated with the degradation of atrazine in different soils. ENVIRONMENT INTERNATIONAL 2023; 181:108303. [PMID: 37948867 DOI: 10.1016/j.envint.2023.108303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Atrazine residues can pose serious threats to soil ecology and human health. Currently, the underlying relationship between soil microbial communities and the degradation genes associated with atrazine degradation remains unclear. In this study, the degradation characteristics of atrazine was investigated in ten different soil types. Further, diversity and abundance of degradation genes and succession of the bacterial community were also studied. The degradation of 10 mg/kg atrazine in different soil types exhibited an initial rapid trend followed by a gradual slowdown, adhering to the first-order kinetic equation. Atrazine significantly increased the absolute abundance of atz degradation genes. The increase in the absolute abundance of atzC gene was the largest, whereas that of atzA gene was the smallest, and the trzD gene was only detected in the Binzhou loam soil. Co-occurrence network analysis showed that the number of potential bacterial hosts of atzC was the highest compared with the other atz genes. Atrazine also altered the structural composition of the soil microbial community. The relative abundances of Ochrobactrum, Nocardiopsis, Lactobacillus, and Brevibacterium was increased in the atrazine-treated soils, while those of Conexibate, Solirubacter, and Micromonospora was decreased significantly compared with the control. Additionally, four atrazine-degrading bacterial strains Rhizobium AT1, Stenotrophomonas AT2, Brevibacterium AT3, and Bacillus AT4 were isolated from the atrazine-treated soils. After 14 d for inoculation, their degradation rate for 10 mg/L atrazine ranged from 17.56 % to 30.55 %. Moreover, the relative abundances of the bacterial genera, including these four isolates, in the atrazine-treated soil were significantly higher than those in the control, indicating that they were involved in the synergistic degradation of atrazine in the soil. This study revealed the degradation characteristics of atrazine, distribution of degradation genes, and succession of microbial communities, and explored the internal relationship between microbial community structure and atrazine degradation mechanisms in different soil types.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xin Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Shiyu Chen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Yu J, He H, Yang WL, Yang C, Zeng G, Wu X. Magnetic bionanoparticles of Penicillium sp. yz11-22N2 doped with Fe 3O 4 and encapsulated within PVA-SA gel beads for atrazine removal. BIORESOURCE TECHNOLOGY 2018; 260:196-203. [PMID: 29625292 DOI: 10.1016/j.biortech.2018.03.103] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
A novel magnetic bionanomaterial, Penicillium sp. yz11-22N2 doped with nano Fe3O4 entrapped in polyvinyl alcohol-sodium alginate gel beads (PFEPS), was successfully synthesized. The factors including nutrient substance, temperature, pH, initial concentrations of atrazine and rotational speeds were presented and discussed in detail. Results showed that the highest removal efficiency of atrazine by PFEPS was 91.2% at 8.00 mg/L atrazine. The maximum removal capacity for atrazine was 7.94 mg/g. Meanwhile, it has been found that most of atrazine were removed by metabolism and degradation of Penicillium sp. yz11-22N2, which could use atrazine as the sole source of either carbon or nitrogen. Degradation kinetics of atrazine conformed to first-order kinetics model. The intermediates indicated that the possible pathway for atrazine degradation by PFEPS mainly included hydrolysis dechlorination, dealkylation, side-chain oxidation and ring-opening.
Collapse
Affiliation(s)
- Jiaping Yu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - William L Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Zhejiang Provincial Key Laboratory of Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xin Wu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Jiang C, Lu YC, Xu JY, Song Y, Song Y, Zhang SH, Ma LY, Lu FF, Wang YK, Yang H. Activity, biomass and composition of microbial communities and their degradation pathways in exposed propazine soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:398-407. [PMID: 28763756 DOI: 10.1016/j.ecoenv.2017.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Propazine is a s-triazine herbicide widely used for controlling weeds for crop production. Its persistence and contamination in environment nagatively affect crop growth and food safety. Elimination of propazine residues in the environment is critical for safe crop production. This study identified a microbial community able to degrade propazine in a farmland soil. About 94% of the applied propazine was degraded within 11 days of incubation when soil was treated with 10mgkg-1 propazine as the initial concentration. The process was accompanied by increased microbial biomass and activities of soil enzymes. Denaturing gradient gel electrophoresis (DGGE) revealed multiple bacterial strains in the community as well as dynamic change of the composition of microbial community with a reduced microbial diversity (H' from 3.325 to 2.78). Tracking the transcript level of degradative genes AtzB, AtzC and TrzN showed that these genes were induced by propazine and played important roles in the degradation process. The activities of catalase, dehydrogenase and phenol oxidase were stimulated by propazine exposure. Five degradation products (hydroxyl-, methylated-, dimeric-propazine, ammeline and ammelide) were characterized by UPLC-MS2, revealing a biodegradation of propazine in soil. Several novel methylated and dimeric products of propazine were characterized in thepropazine-exposed soil. These data help understand the pathway, detailed mechanism and efficiency of propazine biodegradation in soil under realistic field condition.
Collapse
Affiliation(s)
- Chen Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Jiang Yan Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Song
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Hao Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Kun Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Cabrera-Orozco A, Galíndez-Nájera SP, Ruiz-Ordaz N, Galíndez-Mayer J, Martínez-Jerónimo F. Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25656-25665. [PMID: 26897582 DOI: 10.1007/s11356-016-6204-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Atrazine and S-metolachlor are two of the most widely used herbicides for agricultural purposes; consequently, residues of both compounds and their metabolites had been detected in ground and superficial waters. Unlike atrazine, the complete degradation of metolachlor has not been achieved. Hence, the purpose of this research is to study the biodegradation of a commercial mixture of atrazine and S-metolachlor in a prototype of a multi-channel packed-bed-biofilm reactor (MC-PBR) designed with the aim of solving the problems of pressure drop and oxygen transfer, typically found on this type of bioreactors.Because the removal efficiency of the herbicides was increased when Candida tropicalis was added to the original microbial community isolated, the reactor was inoculated with this enriched community. The operational conditions tested in batch and continuous mode did not affect the removal efficiency of atrazine; however, this was not the case for S-metolachlor. The removal rates and efficiencies showed a notable variation along the MC-PBR operation.
Collapse
Affiliation(s)
- Alberto Cabrera-Orozco
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico
| | - Silvia Patricia Galíndez-Nájera
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, UK. Oxford Rd, Manchester, M60 1QD, UK
| | - Nora Ruiz-Ordaz
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico.
| | - Juvencio Galíndez-Mayer
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico.
| | - Fernando Martínez-Jerónimo
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico
| |
Collapse
|
5
|
Benson JJ, Sakkos JK, Radian A, Wackett LP, Aksan A. Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels. J Colloid Interface Sci 2017; 510:57-68. [PMID: 28934611 DOI: 10.1016/j.jcis.2017.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 01/16/2023]
Abstract
Biodegradation by cells encapsulated in silica gel is an economical and environmentally friendly method for the removal of toxic chemicals from the environment. In this work, recombinant E. coli expressing atrazine chlorohydrolase (AtzA) were encapsulated in organically modified silica (ORMOSIL) gels composed of TEOS, silica nanoparticles (SNPs), and either phenyltriethoxysilane (PTES) or methyltriethoxysilane (MTES). ORMOSIL gels adsorbed much higher amounts of atrazine than the hydrophilic TEOS gels. The highest amount of atrazine adsorbed by ORMOSIL gels was 48.91×10-3μmol/mlgel, compared to 8.71×10-3μmol/mlgel by the hydrophilic TEOS gels. Atrazine biodegradation rates were also higher in ORMOSIL gels than the TEOS gels, mainly due to co-localization of the hydrophobic substrate at high concentrations in close proximity of the encapsulated bacteria. A direct correlation between atrazine adsorption and biodegradation was observed unless biodegradation decreased due to severe phase separation. The optimized PTES and MTES gels had atrazine biodegradation rates of 0.041±0.003 and 0.047±0.004μmol/mlgel, respectively. These rates were approximately 80% higher than that measured in the TEOS gel. This study showed for the first time that optimized hydrophobic gel material design can be used to enhance both removal and biodegradation of hydrophobic chemicals.
Collapse
Affiliation(s)
- Joey J Benson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Adi Radian
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA; Department of Environmental, Water and Agricultural Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
6
|
Wang H, Lou J, Gu H, Luo X, Yang L, Wu L, Liu Y, Wu J, Xu J. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13378-13388. [PMID: 27026540 DOI: 10.1007/s11356-016-6515-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.
Collapse
Affiliation(s)
- Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Yong Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, China
| | - Jianjun Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
González-Cuna S, Galíndez-Mayer J, Ruiz-Ordaz N, Murugesan S, Piña-Escobedo A, García-Mena J, Lima-Martínez E, Santoyo-Tepole F. Aerobic biofilm reactor for treating a commercial formulation of the herbicides 2,4-D and dicamba: Biodegradation kinetics and biofilm bacterial diversity. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2016; 107:123-131. [DOI: 10.1016/j.ibiod.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
8
|
Gu H, Lou J, Wang H, Yang Y, Wu L, Wu J, Xu J. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Front Microbiol 2016; 7:38. [PMID: 26858710 PMCID: PMC4731505 DOI: 10.3389/fmicb.2016.00038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Reducing phenanthrene (PHE) in the environment is critical to ecosystem and human health. Biodegradation, biosorption, and the trans-membrane transport mechanism of PHE by a novel strain, Massilia sp. WF1, and an extensively researched model fungus, Phanerochaete chrysosporium were investigated in aqueous solutions. Results showed that the PHE residual concentration decreased with incubation time and the data fitted well to a first-order kinetic equation, and the t1/2 of PHE degradation by WF1, spores, and mycelial pellets of P. chrysosporium were about 2 h, 87 days, and 87 days, respectively. The biosorbed PHE was higher in P. Chrysosporium than that in WF1, and it increased after microorganisms were inactivated and inhibited, especially in mycelial pellets. The detected intracellular auto-fluorescence of PHE by two-photon excitation microscopy also proved that PHE indeed entered into the cells. Based on regression, the intracellular (Kdin) and extracellular (Kdout) dissipation rate constants of PHE by WF1 were higher than those by spores and mycelial pellets. In addition, the transport rate constant of PHE from outside solution into cells (KinS/Vout) for WF1 were higher than the efflux rate constant of PHE from cells to outside solution (KoutS/Vin), while the opposite phenomena were observed for spores and mycelial pellets. The amount of PHE that transported from outside solution into cells was attributed to the rapid degradation and active PHE efflux in the cells of WF1 and P. Chrysosporium, respectively. Besides, the results under the inhibition treatments of 4°C, and the presence of sodium azide, colchicine, and cytochalasin B demonstrated that a passive trans-membrane transport mechanism was involved in PHE entering into the cells of WF1 and P. Chrysosporium.
Collapse
Affiliation(s)
- Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University Hangzhou, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University Hangzhou, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University Hangzhou, China
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno NV, USA
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang UniversityHangzhou, China; Department of Environmental Sciences, University of California at Riverside, RiversideCA, USA
| | - Jianjun Wu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University Hangzhou, China
| |
Collapse
|
9
|
|
10
|
Yang BY, Cao Y, Qi FF, Li XQ, Xu Q. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics. NANOSCALE RESEARCH LETTERS 2015; 10:207. [PMID: 25991912 PMCID: PMC4431992 DOI: 10.1186/s11671-015-0903-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/16/2015] [Indexed: 05/11/2023]
Abstract
A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.
Collapse
Affiliation(s)
- Bi-Yi Yang
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Yang Cao
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Fei-Fei Qi
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Xiao-Qing Li
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
| | - Qian Xu
- />Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University,87 Dingjiaqiao, Nanjing, 210009 China
- />Suzhou Key Laboratory of Environment and Biosafety, Suzhou, 215123 China
| |
Collapse
|
11
|
Ordaz-Guillén Y, Galíndez-Mayer CJ, Ruiz-Ordaz N, Juárez-Ramírez C, Santoyo-Tepole F, Ramos-Monroy O. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8765-8773. [PMID: 24737019 DOI: 10.1007/s11356-014-2809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m(-3) day(-1), for 2,4-D, and 12.8 to 59.3 g m(-3) day(-1) for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day(-1), corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.
Collapse
Affiliation(s)
- Yolanda Ordaz-Guillén
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, Colonia Santo Tomás s/n, CP 11340, México, D.F., México
| | | | | | | | | | | |
Collapse
|
12
|
Wan R, Wang Z, Xie S. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:502-508. [PMID: 24317158 DOI: 10.1016/j.scitotenv.2013.11.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Effect of herbicide adjuvants on the biodegradation rate of the methylthiotriazine herbicide prometryn. Biodegradation 2013; 25:405-15. [DOI: 10.1007/s10532-013-9669-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
|
14
|
Wang Y, Li X, Chen X, Chen D. Directed evolution and characterization of atrazine chlorohydrolase variants with enhanced activity. BIOCHEMISTRY (MOSCOW) 2013; 78:1104-11. [DOI: 10.1134/s0006297913100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Baghapour MA, Nasseri S, Derakhshan Z. Atrazine removal from aqueous solutions using submerged biological aerated filter. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2013; 11:6. [PMID: 24499572 PMCID: PMC3776298 DOI: 10.1186/2052-336x-11-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF) was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs). The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD) removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99%) in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent.
Collapse
Affiliation(s)
- Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Health and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Nasseri
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Derakhshan
- Department of Environmental Health Engineering, School of Health and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Klein S, Avrahami R, Zussman E, Beliavski M, Tarre S, Green M. Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. ACTA ACUST UNITED AC 2012; 39:1605-13. [DOI: 10.1007/s10295-012-1164-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Abstract
Electrospun hollow polymeric microfibers (microtubes) were evaluated as an encapsulation method for the atrazine degrading bacterium Pseudomonas sp. ADP. Pseudomonas sp. ADP cells were successfully incorporated in a formulation containing a core solution of polyethylene oxide dissolved in water and spun with an outer shell solution made of polycaprolactone and polyethylene glycol dissolved in a chloroform and dimethylformamide. The resulting microtubes, collected as mats, were partially collapsed with a ribbon-like structure. Following encapsulation, the atrazine degradation rate was low (0.03 ± 0.01 mg atrazine/h/g fiber) indicating that the electrospinning process negatively affected cell activity. Atrazine degradation was restored to 0.5 ± 0.1 mg atrazine/h/g fiber by subjecting the microtubes to a period of growth. After 3 and 7 days growth periods, encapsulated cells were able to remove 20.6 ± 3 and 47.6 ± 5.9 mg atrazine/g mat, respectively, in successive batches under non-growth conditions (with no additional electron donor) until atrazine was detected in the medium. The loss of atrazine degrading capacity was regained following an additional cell-growth period.
Collapse
Affiliation(s)
- Shiri Klein
- grid.6451.6 0000000121102151 Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| | - Ron Avrahami
- grid.6451.6 0000000121102151 Faculty of Mechanical Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| | - Eyal Zussman
- grid.6451.6 0000000121102151 Faculty of Mechanical Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| | - Michael Beliavski
- grid.6451.6 0000000121102151 Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| | - Sheldon Tarre
- grid.6451.6 0000000121102151 Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| | - Michal Green
- grid.6451.6 0000000121102151 Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology 32000 Haifa Israel
| |
Collapse
|
17
|
Reátegui E, Reynolds E, Kasinkas L, Aggarwal A, Sadowsky MJ, Aksan A, Wackett LP. Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation. Appl Microbiol Biotechnol 2012; 96:231-40. [DOI: 10.1007/s00253-011-3821-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
|