1
|
Díaz D, Zamorano A, García H, Ramos C, Cui W, Carreras C, Beltrán MF, Sagredo B, Pinto M, Fiore N. Development of a Genome-Informed Protocol for Detection of Pseudomonas amygdali pv. morsprunorum Using LAMP and PCR. PLANTS (BASEL, SWITZERLAND) 2023; 12:4119. [PMID: 38140446 PMCID: PMC10747947 DOI: 10.3390/plants12244119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/24/2023]
Abstract
One of the causal agents of bacterial canker is Pseudomonas amygdali pv. morsprunorum-Pam (formerly Pseudomonas syringae pv. morsprunorum). Recently detected in Chile, Pam is known to cause lesions in the aerial parts of the plant, followed by more severe symptoms such as cankers and gummosis in the later stages of the disease. This study presents the design of PCR and LAMP detection methods for the specific and sensitive identification of Pseudomonas amygdali pv. morsprunorum (Pam) from cherry trees. Twelve Pseudomonas isolates were collected, sequenced, and later characterized by Multi-locus Sequence Analysis (MLSA) and Average Nucleotide Identity by blast (ANIb). Three of them (11116B2, S1 Pam, and S2 Pam) were identified as Pseudomonas amygdali pv. morsprunorum and were used to find specific genes through RAST server, by comparing their genome with that of other Pseudomonas, including isolates from other Pam strains. The effector gene HopAU1 was selected for the design of primers to be used for both techniques, evaluating sensitivity and specificity, and the ability to detect Pam directly from plant tissues. While the PCR detection limit was 100 pg of purified bacterial DNA per reaction, the LAMP assays were able to detect up to 1 fg of purified DNA per reaction. Similar results were observed using plant tissues, LAMP being more sensitive than PCR, including when using DNA extracted from infected plant tissues. Both detection methods were tested in the presence of 30 other bacterial genera, with LAMP being more sensitive than PCR.
Collapse
Affiliation(s)
- Daniela Díaz
- Laboratorio de Fitovirología, Departamento de Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (D.D.); (A.Z.); (W.C.); (C.C.)
| | - Alan Zamorano
- Laboratorio de Fitovirología, Departamento de Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (D.D.); (A.Z.); (W.C.); (C.C.)
| | - Héctor García
- Laboratorio Diagnofruit, Avenida Sucre 1521, Santiago 7770273, Chile; (H.G.); (C.R.)
| | - Cecilia Ramos
- Laboratorio Diagnofruit, Avenida Sucre 1521, Santiago 7770273, Chile; (H.G.); (C.R.)
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Campus Providencia, Manuel Montt 948, Santiago 7500975, Chile
| | - Weier Cui
- Laboratorio de Fitovirología, Departamento de Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (D.D.); (A.Z.); (W.C.); (C.C.)
| | - Claudia Carreras
- Laboratorio de Fitovirología, Departamento de Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (D.D.); (A.Z.); (W.C.); (C.C.)
| | - María Francisca Beltrán
- Instituto de Investigaciones Agropecuarias, INIA Rayentué, Avda. Salamanca s/n, Rengo 2940000, Chile; (M.F.B.); (B.S.)
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias, INIA Rayentué, Avda. Salamanca s/n, Rengo 2940000, Chile; (M.F.B.); (B.S.)
| | - Manuel Pinto
- Instituto de Ciencias Agroalimentarias Animales y Ambientales (ICA3), Universidad de O’Higgins, Campus Colchagua, Ruta I-90 S/N, San Fernando 3072590, Chile;
| | - Nicola Fiore
- Laboratorio de Fitovirología, Departamento de Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile; (D.D.); (A.Z.); (W.C.); (C.C.)
| |
Collapse
|
2
|
Lan H, Hong W, Qian D, Peng F, Li H, Liang C, Du M, Gu J, Mai J, Bai B, Peng G. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021; 12:6240-6250. [PMID: 34486477 PMCID: PMC8806632 DOI: 10.1080/21655979.2021.1969194] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the mechanism of osteoarthritis (OA) has been widely studied and the use of quercetin for OA therapy is well documented, the relevant characteristics of the microbiome and metabolism remain unclear. This study reports changes in the gut microbiota and metabolism during quercetin therapy for OA in a rat model and provides an integrative analysis of the biomechanism. In this study, the rats were categorized into 3 different groups: the OA model, quercetin treatment, and control groups. The OA rats was conducted using a monoiodoacetate (MIA) injection protocol. The rats in the quercetin group received daily intragastric administration of quercetin from day 1 to day 28. Stool samples were collected, and DNA was extracted. We used an integrated approach that combined the sequencing of whole 16S rRNA, short-chain fatty acid (SCFA) measurements and metabolomics analysis by mass spectrometry (MS) to characterize the functional impact of quercetin on the gut microbiota and metabolism in a rat model of OA. The use of quercetin partially abrogated intestinal flora disorder and reversed fecal metabolite abnormalities. Compared with the control rats, the OA rats showed differences at both the class level (Clostridia, Bacteroidia, and Bacilli) and the genus level (Lactobacillus and unidentified Ruminococcaceae). Acetic acid, propionic acid and 24 metabolites were significantly altered among the three groups. However, the changes were significantly abrogated in quercetin-treated OA rats. Consequently, this study provided important evidence regarding perturbations of the gut microbiome and the function of these changes in a potential new mechanism of quercetin treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Haiqing Li
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Min Du
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinlan Gu
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxuan Mai
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bo Bai
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Gongyong Peng
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Lan H, Wang H, Gao M, Luo G, Zhang J, Yi E, Liang C, Xiong X, Chen X, Wu Q, Chen R, Lin B, Qian D, Hong W. Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9984112. [PMID: 34337069 PMCID: PMC8315844 DOI: 10.1155/2021/9984112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Baicalin is an extract from the traditional Chinese herb Scutellaria baicalensis and has the potential to treat osteosarcoma (OS). However, the transcriptome-level mechanism of baicalin-mediated antitumor effects in OS has not yet been investigated. The aim of this study was to analyze the competitive endogenous RNA (ceRNA) regulatory network involved in baicalin-induced apoptosis of OS cells. METHODS In this study, CCK-8 and flow cytometry assays were used to detect the antitumor effects of baicalin on human OS MG63 cells. Furthermore, transcriptome sequencing was employed to establish the long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA profiles. RESULTS Baicalin inhibited MG63 cell proliferation and induced apoptosis. Totals of 58 lncRNAs, 31 miRNAs, and 2136 mRNAs in the baicalin-treated MG63 cells were identified as differentially expressed RNAs compared to those in control cells. Of these, 2 lncRNAs, 3 miRNAs, and 18 mRNAs were included in the ceRNA regulatory network. The differentially expressed RNAs were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSIONS By identifying the ceRNA network, our results provide new information about the possible molecular basis of baicalin, which has potential applications in OS treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyan Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guan Luo
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruikun Chen
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Priya GB, Agrawal RK, Milton AAP, Mendiratta SK, Singh BR, Kumar D, Mishra M, Gandham RK. Isothermal amplification assay for visual on-site detection of Staphylococcus aureus in Chevon. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1941078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Govindarajan Bhuvana Priya
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, India
- College of Agriculture, Central Agriculture University (Imphal), Imphal, India
| | - Ravi Kant Agrawal
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bhoj Raj Singh
- Division of Veterinary Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Madhu Mishra
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | |
Collapse
|
5
|
Zhong H, Deng H, Li M, Zhong H. Bioprocessing and integration of a high flux screening systematic platform based on isothermal amplification for the detection on 8 common pathogens. Bioprocess Biosyst Eng 2021; 44:977-984. [PMID: 32862325 PMCID: PMC8096746 DOI: 10.1007/s00449-020-02423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
Abstract
During a large variety of common pathogens, E. coli, P. aeruginosa, MRSA, MRCNS, V. parahaemolyticus, L. monocytogenes and Salmonella are the leading pathogens responsible for large number of human infections and diseases. In this study, a high flux screening based on nucleic acid isothermal amplification technique has been developed. For the 8 common pathogens, species-specific targets had been selected and analyzed for their unique specificity. After optimization, separate LAMP reaction assays had been bioprocessed and integrated into one systematic detection platform, including 8 strips (PCR tubes) and 96-well plates. Eight standard strains verified for the accuracy. Application of the established high flux screening platform was used for detection for 48 samples in 4 different 96-well plates, with 2 groups of 2 operators using double-blind procedure. The accuracy of 100% was obtained, with the total time consumption as 66-75 min (for 12 samples detection on 8 different pathogens). As concluded, through the bioprocess of the systematic platform based on LAMP technique, it's been demonstrated to be capable of simultaneous detection of 8 pathogens, with high sensitivity, specificity, rapidity and convenience.
Collapse
Affiliation(s)
- Huamin Zhong
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongwei Deng
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Ming Li
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Huahong Zhong
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China.
| |
Collapse
|
6
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Huang TY, Zhang L, Liu J. "One-step" characterization platform for pathogenic genetics of Staphylococcus aureus. Bioprocess Biosyst Eng 2021; 44:985-994. [PMID: 33112989 DOI: 10.1007/s00449-020-02449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen causing a variety of life-threatening diseases. In recent years, the health problem caused by S. aureus contaminated food has become a global health problem. S. aureus can express various pathogenic factors, mainly used for adhesion, colonization, invasion and infection of the host. Therefore, rapid and accurate detection of virulence genes in S. aureus is necessary to prevent outbreaks caused by this pathogen. PCR is a useful tool for rapid detection of foodborne pathogens. The objective of this study was to detect the presence of major toxin genes in S. aureus, including sea, seb, sec, see, pvl and tsst, by using a PCR plate. Of the 13 strains tested, 12 (92.3%) were found to be positive for one or more toxin genes. This study realized the one-step detection of main toxin factors in S. aureus.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, 525427, Guangdong, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Kumar Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Jiang H, Wang K, Yan M, Ye Q, Lin X, Chen L, Ye Y, Zhang L, Liu J, Huang T. Pathogenic and Virulence Factor Detection on Viable but Non-culturable Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:630053. [PMID: 33841357 PMCID: PMC8027501 DOI: 10.3389/fmicb.2021.630053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Food safety and foodborne infections and diseases have been a leading hotspot in public health, and methicillin-resistant Staphylococcus aureus (MRSA) has been recently documented to be an important foodborne pathogen, in addition to its recognition to be a leading clinical pathogen for some decades. Standard identification for MRSA has been commonly performed in both clinical settings and food routine detection; however, most of such so-called "standards," "guidelines," or "gold standards" are incapable of detecting viable but non-culturable (VBNC) cells. In this study, two major types of staphylococcal food poisoning (SFP), staphylococcal enterotoxins A (sea) and staphylococcal enterotoxins B (seb), as well as the panton-valentine leucocidin (pvl) genes, were selected to develop a cross-priming amplification (CPA) method. Limit of detection (LOD) of CPA for sea, seb, and pvl was 75, 107.5, and 85 ng/μl, indicating that the analytical sensitivity of CPA is significantly higher than that of conventional PCR. In addition, a rapid VBNC cells detection method, designated as PMA-CPA, was developed and further applied. PMA-CPA showed significant advantages when compared with PCR assays, in terms of rapidity, sensitivity, specificity, and accuracy. Compared with conventional VBNC confirmation methods, the PMA-CPA showed 100% accordance, which had demonstrated that the PMA-CPA assays were capable of detecting different toxins in MRSA in VBNC state. In conclusion, three CPA assays were developed on three important toxins for MRSA, and in combination with PMA, the PMA-CPA assay was capable of detecting virulent gene expression in MRSA in the VBNC state. Also, the above assays were further applied to real samples. As concluded, the PMA-CPA assay developed in this study was capable of detecting MRSA toxins in the VBNC state, representing first time the detection of toxins in the VBNC state.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Lin
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
9
|
Chen DQ, Huang T, Wang Q, Bai C, Yang L. Analysis on the virulomes and resistomes of multi-drug resistance clinical Escherichia coli isolates, as well as the interactome with gut microbiome. Microb Pathog 2020; 148:104423. [PMID: 32768515 DOI: 10.1016/j.micpath.2020.104423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023]
Abstract
Escherichia coli is one of the most diverse microbial species. Pathogenic E. coli is capable of causing various diseases in humans, including several types of diarrhea, urinary tract infections, sepsis, and meningitis. This study focused on the antibiotic susceptibility profile and genomic analysis of a clinical E. coli Guangzhou-Eco330 isolated from a hospitalized 8-year-old female patient suffered from pulmonary infection in 2017. Susceptibility to 15 antibiotics were determined using Vitek2™ Automated Susceptibility System and Etest strips and interpreted based on CLSI guidelines. The genome was sequenced using Illumina Hiseq 2500 platform and assembled de novo using Velvet, followed by bioinformatics analysis. The genome has a length of 5,132,642 bp and contains 4989 predicted genes with an average GC content of 50.51%. The carriage of rfbE gene suggested the strain belonging to O157. In the genome, 70 non-coding RNAs, 50 repeat sequences, 18 transposons, 78 GIs, 9 CRISPRs, and 3 large prophages were identified. 37 PHI related genes and 108 virulence genes were determined to contribute to its pathogenicity. Specifically, the acquisition of multiple antibiotic resistance genes including blaCTX-M-55, blaOXA-10, blaCMY-48, tetB, and qnrS1 contributed to its resistance to penicillins, telracyclines, cephalosporin, and quinolones. The understanding of the genome may aid in further study on the clinical control of multi-drug resistance E. coli.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, 510010, China.
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Goudarzi R, Mortazavi MM. Loop-mediated isothermal amplification: a rapid molecular technique for early diagnosis of Pseudomonas syringae pv. syringae of stone fruits. J Genet Eng Biotechnol 2020; 18:55. [PMID: 33009592 PMCID: PMC7532232 DOI: 10.1186/s43141-020-00062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 12/02/2022]
Abstract
Background Pathogenic bacteria cause significant economic damages in agriculture. The detection of such bacteria is considered as a continual interest for plant pathologists to prevent disease dissemination. Pseudomonas syringae pv. syringae is one of the most important bacterial pathogens infecting yield and quality of stone fruits throughout the world. Biochemical assays such as a LOPAT and GATTa are common methods to detect this pathogen. Serological tests and culturing on King’s B selective medium also used to isolate this bacterium. Selective media is composed of specific and effective ingredients to inhibit the growth of certain species of microbes in a mixed culture while allowing others to grow. These are used for the growth of only selected microorganisms. King’s B medium can be used as a general medium for the non-selective isolation cultivation and pigment production of Pseudomonas species from foods, cosmetic samples, plants, etc. Nevertheless, the mentioned methods are not enough accurate to differentiate the strains. On the other hand, PCR-based techniques are sensitive and efficient in detecting plant diseases. However, these techniques are not practicable for those researchers who do not have access to a thermal cycler. We have used loop-mediated isothermal amplification to couple with a target. The amplification of syrD gene using loop and bumper primers can be used to prevent disease dissemination. Results The outcome of this investigation indicated more sensitivity of LAMP in comparison to PCR. The direct addition of SYBR Gold in microtube is more sensitive than gel in both LAMP and PCR byproducts so we can eliminate gel electrophoresis, while the LAMP showed high sensitivity and high specificity in comparison to results obtained by cultivation. The described molecular test could detect Pseudomonas syringae pv. syringae type in nearly 1 h, and this is the first time that Lamp molecular detection of Pseudomonas syringae pv. syringae particularly on stone fruits is described and introduced. Conclusions The obtained data confirmed that LAMP is a fast, cheap, and high specific method for the rapid detection of Pseudomonas syringae pv. syringae to the comparison of PCR and culture.
Collapse
Affiliation(s)
- R Goudarzi
- Department of Agriculture, Damghan Islamic Azad University, Damghan, Iran
| | - M M Mortazavi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran. .,Ehya Bone Company, Growth Center, Golestan University of Medical Sciences, Gorgan, Iran. .,Transmission Electron Microscope Lab, Biomedical Technology Wing, SCTIMSTs, Trivandrum, India.
| |
Collapse
|
11
|
Fu J, Wang K, Ye C, Chen L, Liang Y, Mao Y, Chen J, Peng R, Chen Y, Shi F, Huang TY, Liu J. Study on the virulome and resistome of a vancomycin intermediate-resistance Staphylococcus aureus. Microb Pathog 2020; 145:104187. [PMID: 32275941 DOI: 10.1016/j.micpath.2020.104187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
Methicillin-resistant S. aureus (MRSA) has been considered a potential "Super Bugs", responsible for various infectious diseases. Vancomycin has been the most effective antibitic to treat MRSA originated infections. In this study, we aimed at investigating the genomic features of a vancomycin intermediate-resistance S. aureus strain Guangzhou-SauVS2 isolated from a female patient suffering from chronic renal function failure, emphasizing on its antimicrobial resistance and virulence determinants. The genome has a total length of 2,605,384 bp and the G+C content of 33.21%, with 2,239 predicted genes annotated with GO terms, COG categories, and KEGG pathways. Besides the carriage of vancomycin b-type resistance protein responsible for the vancomycin intermediate-resistance, S. aureus strain Guangzhou-SauVS2 showed resistance to β-lactams, quinolones, macrolide, and tetracycline, due to the acquisition of corresponding antimicrobial resistance genes. In addition, virulence factors including adherence, antiphagocytosis, iron uptake, and toxin were determined, indicating the pathogenesis of the strain.
Collapse
Affiliation(s)
- Jie Fu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, 525427, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yanni Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Fan Shi
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Shantou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Chen W, Chen H, Fu S, Lin X, Zheng Z, Zhang J. Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights. Bioprocess Biosyst Eng 2020; 44:929-939. [PMID: 32458051 DOI: 10.1007/s00449-020-02380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
The therapeutic effect of inflammatory bowel disease has improved in the past decades, but most of patients cannot tolerate, do not respond to drugs, or relapse after treating with conventional therapy. Therefore, new and more effective treatment methods are still needed in treatment of IBD. In this review, we will discuss the relevant mechanisms and the latest research progress of biologics (anti-TNF treatments, interleukin inhibitors, integrin inhibitors, antisense oligonucleotide, and JAK inhibitors) for IBD, focus on the efficacy and safety of drugs for moderate-to-severe IBD, and summarize the clinical status and future development direction of biologics in IBD.
Collapse
Affiliation(s)
- Wenshuo Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Haijin Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China.
| | - Shudan Fu
- Ophthalmology Department, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Xiaohua Lin
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Zheng Zheng
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Jinlong Zhang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| |
Collapse
|
13
|
Srimongkol G, Ditmangklo B, Choopara I, Thaniyavarn J, Dean D, Kokpol S, Vilaivan T, Somboonna N. Rapid colorimetric loop-mediated isothermal amplification for hypersensitive point-of-care Staphylococcus aureus enterotoxin A gene detection in milk and pork products. Sci Rep 2020; 10:7768. [PMID: 32385390 PMCID: PMC7211006 DOI: 10.1038/s41598-020-64710-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/17/2020] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus strains carrying enterotoxin A gene (sea) causes food poisoning and cannot be distinguished from non-pathogenic strains by the culture method. Here, we developed a rapid, specific and sensitive visual detection of sea using loop-mediated isothermal amplification (LAMP) combined with nanogold probe (AuNP) or styryl dye (STR). LAMP-AuNP and LAMP-STR can detect as low as 9.7 fg (3.2 sea copies) and 7.2 sea copies, respectively, which were lower than PCR (97 fg or 32 sea copies). The excellent performance of these new assays was demonstrated in food samples using crude DNA lysates. While the culture method detected 104 CFU/g in ground pork and 10 CFU/mL in milk in 5-7 days, LAMP-AuNP could detect down to 10 CFU/g for both samples in 27 minutes. Analyzing 80 pork and milk samples revealed that the LAMP-AuNP showed 100% sensitivity, 97-100% specificity and 97.5-100% accuracy, which were superior to the culture method, and comparable to PCR but without requirement of a thermal cycler. Furthermore, our LAMP-AuNP detect sea at a range below the food safety control (<100 CFU/g). The LAMP-STR quantitated sea in 10-1,000 CFU (7.2-720 copies). Our crude DNA lysis combined with LAMP-AuNP/STR present effective point-of-care detection and facilitate appropriate control strategies.
Collapse
Affiliation(s)
- Grittaya Srimongkol
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boonsong Ditmangklo
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ilada Choopara
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiraporn Thaniyavarn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Li DX, Shu GL, Wang WJ, Wu Y, Niu HC. Simple, Rapid and Sensitive Detection of Pseudomonas aeruginesa by Colorimetric Multiple Cross Displacement Amplification. Curr Med Sci 2020; 40:372-379. [PMID: 32337699 DOI: 10.1007/s11596-020-2169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/15/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic pathogen in hospital-acquired infections. Thus, early diagnosis is the best strategy for fighting against these infections. In this report, we incorporated multiple cross displacement amplification (MCDA) combined with the malachite green (MG) for rapid, sensitive, specific and visual detection of P. aeruginosa by targeting the oprl gene. The MCDA-MG assay was conducted at 67°C for only 40 min during the amplification stage, and then products were directly detected by using colorimetric indicators (MG), eliminating the use of an electrophoresis instrument or amplicon analysis equipment. The entire process, including specimen processing (35 min), amplification (40 min) and detection (5 min), can be finished within 80 min. All 30 non-P. aeruginosa strains tested negative, indicating the high specificity of the MCDA primers. The analytical sensitivity of the MCDA-MG assay was 100 fg of genomic templates per reaction in pure culture, which was in complete accordance with MCDA by gel electrophoresis and real-time turbidity. The assay was also successfully applied to detecting P. aeruginosa in stool samples. Therefore, the rapidity, simplicity, and nearly equipment-free platform of the MCDA-MG technique make it possible for clinical diagnosis, and more.
Collapse
Affiliation(s)
- Dong-Xun Li
- Changping District Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Gao-Lin Shu
- Changping District Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wei-Jun Wang
- Changping District Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Wu
- Changping District Center for Disease Control and Prevention, Beijing, 102206, China
| | - Huan-Cai Niu
- Changping District Center for Disease Control and Prevention, Beijing, 102206, China
| |
Collapse
|
15
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Liu G, Liu J. High-flux simultaneous screening of common foodborne pathogens and their virulent factors. Bioprocess Biosyst Eng 2020; 43:693-700. [PMID: 31863186 DOI: 10.1007/s00449-019-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Rapid and sensitive detection techniques for foodborne pathogens are important to the food industry. However, traditional detection methods rely on bacterial culture in combination with biochemical tests, a process that typically takes 4-7 days to complete. In this study, we described a high-flux polymerase chain reaction (PCR) method for simultaneous detection of nine targeted genes (rfbE, stx1, stx2, invA, oprI, tlh, trh, tdh, and hlyA) with multiplex strains. The designed primers were highly specific for their respective target gene fragments. As the selected primers follow the principles of similar melting and annealing temperature, all the targeted genes could be detected for one strain with the same PCR program. Combining with 96-well PCR plate, by adding a single different gene to each well in each row, both the ATCC strains (E. coli, Salmonella spp., V. parahaemolyticus, L. monocytogenes, P. aeruginosa, S. aureus) and the clinical strains (E. coli, P. aeruginosa, S. aureus) were simultaneously detected to carry their specific and virulence genes. Therefore, using 96-well PCR plate for PCR amplification might be applied to high-flux sequencing of specific and virulence genes.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd, Maoming, 525427, Guangdong, China
| | - Guoxing Liu
- Guangzhou KEO Biotechnology Co. LTD, Guangzhou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng 2020; 44:953-964. [PMID: 32157446 DOI: 10.1007/s00449-020-02320-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with gut microbiota disturbance. Emerging evidence has shown that gut microbiota plays a major role in the development of PCOS. To better understand how the gut microbiota contributes to the development of PCOS, we investigated the influences of high-fat diet and hyperandrogenism, independently or synergistically, have on the gut microbiota in rats. Furthermore, we explored the associations between gut microbiota and hyperandrogenism or other hallmarks of PCOS. Twenty female SD rats were randomized at aged 3 weeks into 4 groups (n = 5, each); HA: PCOS rats fed with ordinary diet; HF: rats with high-fat diet (HFD); HA-HF: PCOS rats fed with HFD; and C: control rats with ordinary diet. PCOS rat model was induced by 5α-dihydrotestosterone (DHT) injection for 6 weeks. The fasting blood glucose (FBG), plasma insulin, testosterone, free testosterone, TNF-α, MDA, SOD, LPS, TLR4, TG, TC, HDL-C, and LDL-C levels were measured. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing. The results showed that rats in the HA and HA-HF group displayed abnormal estrous cycles with increasing androgen level and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Compare with the C group, relative abundance of the Bacteroidetes phylum decreased significantly in the other groups (P < 0.05). The Chao1 was the highest in the group C and significantly higher than the HA-HF group (P < 0.05). T, FT, insulin, MDA, LPS, and TNF-α levels had the negative correlation with the richness of community (Chao1 index) in the gut. The rats in the HF and HA-HF groups tended to have lower Shannon and Simpson indices than the C group (P < 0.01, respectively). However, there were no significant differences between C group and the HA group in the Shannon and Simpson values. Beta diversity analysis was then performed based on a weighted UniFrac analysis. The PCoA plots showed a clear separation of the C group from the other groups. ANOSIM analysis of variance confirmed that there were statistically significant separations between the C group and the HA, HA-HF, and HF groups (P < 0.01, respectively). These results showed that DHT with HFD could lower diversity of the gut microbial community. Both HFD and DHT could shift the overall gut microbial composition and change the composition of the microbial community in gut. Furthermore, our analyses demonstrated that the levels of TG, MDA, TNF-α, LPS, TLR4, T, FT, FINS, and HDL-C were correlated with the changes of in the gut microbiome. HFD and DHT were associated with the development and pathology of PCOS by shaping gut microbial communities.
Collapse
Affiliation(s)
- Yanhua Zheng
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingwei Yu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chengjie Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuna Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmei Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Li Y, Huang TY, Ye C, Chen L, Liang Y, Wang K, Liu J. Formation and Control of the Viable but Non-culturable State of Foodborne Pathogen Escherichia coli O157:H7. Front Microbiol 2020; 11:1202. [PMID: 32612584 PMCID: PMC7308729 DOI: 10.3389/fmicb.2020.01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
As a common foodborne pathogen, Escherichia coli O157:H7 produces toxins causing serious diseases. However, traditional methods failed in detecting E. coli O157:H7 cells in the viable but non-culturable (VBNC) state, which poses a threat to food safety. This study aimed at investigating the formation, control, and detection of the VBNC state of E. coli O157:H7. Three factors including medium, salt, and acid concentrations were selected as a single variation. Orthogonal experiments were designed with three factors and four levels, and 16 experimental schemes were used. The formation of the VBNC state was examined by agar plate counting and LIVE/DEAD® BacLightTM bacterial viability kit with fluorescence microscopy. According to the effects of environmental conditions on the formation of the VBNC state of E. coli O157:H7, the inhibition on VBNC state formation was investigated. In addition, E. coli in the VBNC state in food samples (crystal cake) was detected by propidium monoazide-polymerase chain reaction (PMA-PCR) assays. Acetic acid concentration showed the most impact on VBNC formation of E. coli O157:H7, followed by medium and salt concentration. The addition of 1.0% acetic acid could directly kill E. coli O157:H7 and eliminate its VBNC formation. In crystal cake, 25, 50, or 100% medium with 1.0% acetic acid could inhibit VBNC state formation and kill E. coli O157:H7 within 3 days. The VBNC cell number was reduced by adding 1.0% acetic acid. PMA-PCR assay could be used to detect E. coli VBNC cells in crystal cake with detection limit at 104 CFU/ml. The understanding on the inducing and inhibitory conditions for the VBNC state of E. coli O157:H7 in a typical food system, as well as the development of an efficient VBNC cell detection method might aid in the control of VBNC E. coli O157:H7 cells in the food industry.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- *Correspondence: Junyan Liu,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
- Kan Wang,
| |
Collapse
|
18
|
Zhou W, Wang K, Hong W, Bai C, Chen L, Fu X, Huang T, Liu J. Development and Application of a Simple "Easy To Operate" Propidium Monoazide-Crossing Priming Amplification on Detection of Viable and Viable But Non-culturable Cells of O157 Escherichia coli. Front Microbiol 2020; 11:569105. [PMID: 33101241 PMCID: PMC7546352 DOI: 10.3389/fmicb.2020.569105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
O157 Escherichia coli is one of the most important foodborne pathogens causing disease even at low cellular numbers. Thus, the early and accurate detection of this pathogen is important. However, due to the formation of viable but non-culturable (VBNC) status, the golden standard culturing methodology fails to identify O157 E. coli once it enters VBNC status. Crossing priming amplification (CPA) is a novel, simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to firstly develop and apply a CPA assay with propidium monoazide (PMA) for the rapid detection of the foodborne E. coli O157:H7 in VBNC state. Five primers (2a/1s, 2a, 3a, 4s, and 5a) were specially designed for recognizing three targets, which were rfbE, stx1, and stx2, and evaluated for its effectiveness in detecting VBNC cell of E. coli O157:H7 with detection limits of pure VBNC culture at 103, 105, and 105 colony-forming units (CFUs)/ml for rfbE, stx1, and stx2, respectively, whereas those of food samples (frozen pastry and steamed bread) were 103, 105, and 105 CFUs/ml. The application of the PMA-CPA assay was successfully used on detecting E. coli O157:H7 in VBNC state from food samples. In conclusion, this is the first development of PMA-CPA assay on the detection of VBNC cell, which was found to be useful and a powerful tool for the rapid detection of E. coli O157:H7 in VBNC state. Undoubtedly, the PMA-CPA method can be of high value to the food industry owing to its various advantages such as speed, specificity, sensitivity, and cost-effectiveness.
Collapse
Affiliation(s)
- Wenqu Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xin Fu,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Junyan Liu,
| |
Collapse
|
19
|
Ou A, Wang K, Mao Y, Yuan L, Ye Y, Chen L, Zou Y, Huang T. First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Front Microbiol 2020; 11:615875. [PMID: 33488559 PMCID: PMC7817642 DOI: 10.3389/fmicb.2020.615875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Formation of viable but non-culturable (VBNC) status in methicillin-resistant Staphylococcus aureus (MRSA) has never been reported, and it poses a significant concern for food safety. Thus, this study aimed to firstly develop a rapid, cost-effective, and efficient testing method to detect and differentiate MRSA strains in the VBNC state and further apply this in real food samples. Two targets were selected for detection of MRSA and toxin, and rapid isothermal amplification detection assays were developed based on cross-priming amplification methodology. VBNC formation was performed for MRSA strain in both pure culture and in artificially contaminated samples, then propidium monoazide (PMA) treatment was further conducted. Development, optimization, and evaluation of PMA-crossing priming amplification (CPA) were further performed on detection of MRSA in the VBNC state. Finally, application of PMA-CPA was further applied for detection on MRSA in the VBNC state in contaminated food samples. As concluded in this study, formation of the VBNC state in MRSA strains has been verified, then two PMA-CPA assays have been developed and applied to detect MRSA in the VBNC state from pure culture and food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yimin Zou,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
20
|
Tian X, Feng J, Wang Y. Direct loop-mediated isothermal amplification assay for on-site detection of Staphylococcus aureus. FEMS Microbiol Lett 2019; 365:4966978. [PMID: 29648586 PMCID: PMC5967525 DOI: 10.1093/femsle/fny092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that may produce a variety of toxins and cause staphylococcal food poisoning. In the present study, a direct loop-mediated isothermal amplification (LAMP) assay was developed and validated to detect S. aureus in food samples. Without prior cultural enrichment and DNA extraction steps, bacterial DNA was released by heating at 100°C for 5 min and directly subjected to LAMP assay. Using a set of LAMP primers recognizing six distinct regions of nuc gene, the developed direct LAMP assay was highly specific, and the analytical sensitivity was determined to be 7.6 × 102 CFU/mL. Moreover, with the pre-mixed LAMP reagents stored at –20°C, the entire assay should be finished within 40 min. These features greatly simplified the operating procedure and made the direct LAMP a powerful tool for rapid and on-site detection of S. aureus in food samples.
Collapse
Affiliation(s)
- Xiaolan Tian
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Junli Feng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, PR China.,Key Lab of aquatic Products Processing of Zhejiang Province, Hangzhou 310012, PR China
| | - Yi Wang
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, PR China
| |
Collapse
|
21
|
Chylewska A, Ogryzek M, Makowski M. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection. Curr Med Chem 2019; 26:121-165. [DOI: 10.2174/0929867324666171023164813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/20/2017] [Accepted: 05/20/2016] [Indexed: 11/22/2022]
Abstract
Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.
Collapse
Affiliation(s)
- Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Małgorzata Ogryzek
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| |
Collapse
|
22
|
Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Sci Rep 2019; 9:1312. [PMID: 30718527 PMCID: PMC6361893 DOI: 10.1038/s41598-018-35558-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023] Open
Abstract
This study aimed to evaluate the Staphylococcus aureus biofilm formation and Nε-carboxymethyl-lysine generation ability under food heat processing conditions including pH (5.0-9.0), temperature (25 °C, 31 °C, 37 °C, 42 °C and 65 °C), NaCl concentration (10%, 15% and 20%, w/v) and glucose concentration (0.5%, 1%, 2%, 3%, 5%, 10%, w/v). S. aureus biofilm genetic character was obtained by PCR detecting atl, ica operon, sasG and agr. Biofilm biomass and metabolic activity were quantified with crystal violet and methyl thiazolyl tetrazolium staining methods. S. aureus biofilm was sensitive to food heat processing conditions with 37 °C, pH 7.0, 2% glucose concentration (w/v) and 10% NaCl concentration (w/v) were favorable conditions. Besides, free and bound Nε-carboxymethyl-lysine level in weak, moderate and strong biofilm were detected by optimized high performance liquid chromatography tandem mass spectrometry. Nε-carboxymethyl-lysine level in S. aureus biofilm possessed a significant gap between strong, moderate and weak biofilm strains. This investigation revealed the biological and chemical hazard of Staphylococcus aureus biofilm to food processing environment.
Collapse
|
23
|
Mashoufi A, Ghazvini K, Hashemi M, Mobarhan MG, Vakili V, Afshari A. A novel primer targetedgyrBgene for the identification ofCronobacter sakazakiiin powdered infant formulas (PIF) and baby foods in Iran. J Food Saf 2018. [DOI: 10.1111/jfs.12609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Afsaneh Mashoufi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Hashemi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour Mobarhan
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Vida Vakili
- Department of Social Medicine, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
24
|
Miao J, Wang W, Xu W, Su J, Li L, Li B, Zhang X, Xu Z. The fingerprint mapping and genotyping systems application on methicillin-resistant Staphylococcus aureus. Microb Pathog 2018; 125:246-251. [PMID: 30243550 DOI: 10.1016/j.micpath.2018.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
As a typical Gram-positive microorganism, S. aureus was recognized as common foodborne pathogenic bacteria in food industry. To study their individuality and pathogenicity mechanism, thirty-three Staphylococci strains were applied to the investigation with the identification of MRSA by PCR targeting on S. aureus specific 16S rRNA and femA genes as well as methicillin-resistant mecA and orfX elements by multiplex-PCR assay. Fingerprinting mapping was then employed using three typing systems (KZ/M13, IS256 and ERIC2) to genotype 33 MRSA strains. As the result indicated, all 33 Staphylococci strains were identified as MRSA. However, diversity occurred among different fingerprinting system results. KZ/M13 system and IS256 system both typed 10 genotypes while ERIC2 system had 8 genotypes. Based on the genotyping results, a discussion was performed in typing ability, discriminatory ability and accordance ratio. Given the above studies, a novel rapid detection method for MRSA was conducted with multiplex-PCR, which possessed rapidity and accuracy. Meanwhile, three fingerprinting systems showed high sensitivity, resolution and classification ratio in MRSA typing. These methods have a broad application prospect in food safety and epidemiology in the future.
Collapse
Affiliation(s)
- Jian Miao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenxin Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenyi Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China; Department of Microbial Pathogenesis, University of Maryland, Baltimore, 21201, USA.
| |
Collapse
|
25
|
Liu J, Xu R, Zhong H, Zhong Y, Xie Y, Li L, Li B, Chen D, Xu Z. RETRACTED: Prevalence of GBS serotype III and identification of a ST 17-like genotype from neonates with invasive diseases in Guangzhou, China. Microb Pathog 2018; 120:213-218. [DOI: 10.1016/j.micpath.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 10/25/2022]
|
26
|
Liu J, Li L, Zhou L, Li B, Xu Z. Effect of ultrasonic field on the enzyme activities and ion balance of potential pathogen Saccharomyces cerevisiae. Microb Pathog 2018; 119:216-220. [DOI: 10.1016/j.micpath.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
|
27
|
High flux isothermal assays on the pathogenic features of Mycoplasma pneumoniae. Microb Pathog 2018; 120:219-222. [PMID: 29730516 DOI: 10.1016/j.micpath.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022]
Abstract
As one of the most important pathogens, M. pneumoniae is a causative agent responsible for atypical and other respiratory tract infections, even its extra-pulmonary complications. This study aims to use the high and rapid flux sequencing assays on the M. pneumoniae and further bioinformatic analysis, for the investigation of their clinical features and pathogenic characteristics. The results in this study on the clinical features and pathogenic characteristics of M. pneumoniae may further aid in the control and surveillance and better understanding of this pathogen.
Collapse
|
28
|
Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413. Microb Pathog 2018; 117:265-269. [PMID: 29486277 DOI: 10.1016/j.micpath.2018.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We previously described the novel qnrVC6 and blaIMP-45 carrying megaplasmid pBM413. This study aimed to investigate the complete genome of multidrug-resistance P. aeruginosa Guangzhou-Pae617, a clinical isolate from the sputum of a patient who was suffering from respiratory disease in Guangzhou, China. METHODS The genome was sequenced using Illumina Hiseq 2500 and PacBio RS II sequencers and assembled de novo using HGAP. The genome was automatically and manually annotated. RESULTS The genome of P. aeruginosa Guangzhou-Pae617 is 6,430,493 bp containing 5881 predicted genes with an average G + C content of 66.43%. The genome showed high similarity to two new sequenced P. aeruginosa strains isolated from New York, USA. From the whole genome sequence, we identified a type IV pilin, two large prophages, 15 antibiotic resistant genes, 5 genes involved in the "Infectious diseases" pathways, and 335 virulence factors. CONCLUSIONS The antibiotic resistance and virulence factors in the genome of P. aeruginosa strain Guangzhou-Pae617 were identified by complete genomic analysis. It contributes to further study on antibiotic resistance mechanism and clinical control of P. aeruginosa.
Collapse
|
29
|
Manajit O, Longyant S, Sithigorngul P, Chaivisuthangkura P. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa. Mol Med Rep 2018; 17:5734-5743. [PMID: 29436623 PMCID: PMC5866016 DOI: 10.3892/mmr.2018.8557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/22/2018] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important opportunistic pathogen that causes serious infections in humans, including keratitis in contact lens wearers. Therefore, establishing a rapid, specific and sensitive method for the identification of P. aeruginosa is imperative. In the present study, the uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification combined with nanogold labeled hybridization probe (UDG-LAMP-AuNP) was developed for the detection of P. aeruginosa. UDG-LAMP was performed to prevent carry over contamination and the LAMP reactions can be readily observed using the nanogold probe. A set of 4 primers and a hybridization probe were designed based on the ecfX gene. The UDG-LAMP reactions were performed at 65°C for 60 min using the ratio of 40% deoxyuridine triphosphate to 60% deoxythymidine triphosphate. The detection of UDG-LAMP products using the nanogold labeled hybridization probe, which appeared as a red-purple color, was examined at 65°C for 5 min with 40 mM MgSO4. The UDG-LAMP-AuNP demonstrated specificity to all tested isolates of P. aeruginosa without cross reaction to other bacteria. The sensitivity for the detection of pure culture was 1.6×103 colony-forming units (CFU) ml−1 or equivalent to 3 CFU per reaction while that of polymerase chain reaction was 30 CFU per reaction. The detection limit of spiked contact lenses was 1.1×103 CFU ml−1 or equivalent to 2 CFU per reaction. In conclusion, the UDG-LAMP-AuNP assay was rapid, simple, specific and was effective for the identification of P. aeruginosa in contaminated samples.
Collapse
Affiliation(s)
- Orapan Manajit
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
30
|
Liu L, Lu Z, Li L, Li B, Zhang X, Zhang X, Xu Z. Physical relation and mechanism of ultrasonic bactericidal activity on pathogenic E. coli with WPI. Microb Pathog 2018; 117:73-79. [PMID: 29428425 DOI: 10.1016/j.micpath.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the physical relation and mechanism of bactericidal activity on pathogenic E. coli by ultrasonic field with whey protein isolate (WPI). METHODS Ultrasound treatment was performed under the conditions of intensity at 65 W/cm2, pulse duty ratio at 0.5 for 0-15 min with WPI concentration ranged from 0 to 10%. Viscosity, granularity, surface hydrophobicity, free radical scavenging activity, and thermal denaturation were assessed by rotational viscometer, Malvern Mastersizer 2000 particle size analyzer, fluorescent probe ANS method, DPPH method, and differential scanning calorimetry, respectively. RESULTS The thermal denaturation of WPI was not altered by ultrasound field, but the viscosity of WPI was increased upon 10 min treatment. Additionally, its ability to scavenge free radicals and hydrophobicity were increased. The result also showed that the bacteria viability was improved by WPI during ultrasound treatment. However, the WPI protection was decreased by the prolonged treatment. CONCLUSION Ultrasound treatment resulted in the increasing of the viscosity, free radicals scavenging activity and hydrophobicity of WPI which led to reduced bactericidal activity on E. coil, while WPI protection was disintegrated by prolonged treatment.
Collapse
Affiliation(s)
- Liyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Zerong Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Ximei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China; Department of Microbial Pathogenesis, University of Maryland, Baltimore, 21201, USA.
| |
Collapse
|
31
|
|
32
|
Li Y, Bai C, Yang L, Fu J, Yan M, Chen D, Zhang L. High flux isothermal assays on pathogenic, virulent and toxic genetics from various pathogens. Microb Pathog 2018; 116:68-72. [PMID: 29325863 DOI: 10.1016/j.micpath.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 11/17/2022]
Abstract
Toxins, encoding by virulence factors, are significant cause of food-borne illnesses and death in the worldwide. Loop-mediated isothermal amplification (LAMP) is one of the widely used methodologies because of the high sensitivity, specificity and rapidity. Nowadays, LAMP has been regarded as an innovative gene amplification technology and emerged as an alternative to PCR-based methodologies in identification of the pathogenic virulent and toxic genetics. The high sensitivity of LAMP enables detection of the pathogens in sample materials even without time consuming and sample preparation. Therefore, we review the typical characteristics of LAMP assay, recent advance in detection of virulence factors and the application of LAMP assay on detection of four commonly virulence factors. As concluded, with the advantages of rapidity, simplicity, sensitivity, specificity and robustness, LAMP is capable of identification the virulence factors. Moreover, the main purpose of this review is to provide theory support for the application of LAMP assay on the virulence factors identification.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guagzhou 510010, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
33
|
Li Y, Yang L, Fu J, Yan M, Chen D, Zhang L. Genotyping and high flux sequencing of the bacterial pathogenic elements - integrons. Microb Pathog 2018; 116:22-25. [PMID: 29306009 DOI: 10.1016/j.micpath.2017.12.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/31/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Regarded as a common genetic element responsible for horizontal gene transfer and wide spread of antimicrobial resistance among a large variety of bacteria, integrons are commonly distributed and considered as a determinant in the acquisition and evolution of virulence and antibiotic resistance. To date, the surveillances of integrons have been widely conducted in clinic, community even husbandry. For exact and accurate integron screening, as well as resistant cassettes, reliable monitoring methods is need. Current methods applied on integron screening are mainly conducted by the screening of integrases, followed by the detection of various gene cassettes inserted into integrons. PCR and PCR-related methods (such as RFLP) are mainly employed under such circumstances. Matured LAMP and Sequencing technology have lowered cost and dramatically increased throughput in integron screening and possessed the advantages in similarity analysis of mutated resistant cassettes. This review focused on the classification and characterization of integrons, antimicrobial resistance of integron and genotyping methods for integrons. In methodology, PCR, LAMP and Sequencing technology were mainly introduced for the screening of various classes' integrons and the detection of resistant gene cassettes. Staphylococcus, Pseudomonas and Enterococcus were selected as typical integron-positive clinical and environmental pathogens screened with three methods mentioned above. With the surveillance of the occurrence of integron and resistance gene cassettes conducted in South China, the review also summarized the occurrence, pathogenicity and virulence mediated by integrons.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
34
|
Yin H, Dong J, Yu J, Li Y, Deng Y. A novel horA genetic mediated RCA detection of beer spoilage lactobacillus. Microb Pathog 2018; 114:311-314. [PMID: 29197525 DOI: 10.1016/j.micpath.2017.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
|
35
|
Virulence and resistance on various pathogens mediated by mobile genetic integrons via high flux assays. Microb Pathog 2018; 114:75-79. [DOI: 10.1016/j.micpath.2017.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
|
36
|
Correlation and in vitro mechanism of bactericidal activity on E. coli with whey protein isolate during ultrasonic treatment. Microb Pathog 2017; 115:154-158. [PMID: 29278782 DOI: 10.1016/j.micpath.2017.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to investigate correlation and in vitro mechanism of bactericidal activity on E. coli with whey protein isolate (WPI) during ultrasonic treatment. METHODS The structural changes of WPI under ultrasonic field were studied by amino-acid analyzer, circular dichroism, SDS-PAGE, and spectrophotometer. RESULTS With the increasing of WPI concentration added during ultrasonic treatment, the survival rate of E. coli increased. The influence of WPI on bactericidal activity under ultrasonic treatment might due to the change of tertiary and higher level structures, not by the primary structure, and had little relation with secondary structure. CONCLUSION The influence of WPI on bactericidal activity during ultrasonic treatment might due to the change of the tertiary structure and higher level structures.
Collapse
|
37
|
Chen DQ, Jiang YT, Feng DH, Wen SX, Su DH, Yang L. Integron mediated bacterial resistance and virulence on clinical pathogens. Microb Pathog 2017; 114:453-457. [PMID: 29241766 DOI: 10.1016/j.micpath.2017.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Integron was recognized as mobile elements responsible for the emergence and diffusion of antibiotic resistance, virulence and pathogenicity. The existence of resistant integron in pathogens may consequently lead to the increasing number of clinical failures in bacterial mediated diseases, as well as the expenses. In this study, a total of 22 clinical pathogens (including E. faecalis, S. aureus, K. pneumoniae, Enterobacter, P. aeruginosa and Acinetobacter) were subjected to the identification of class 1-class 3 integrons and drug resistant gene cassettes by high flux LAMP method. According to the results, the clinical isolates were screened as carrying class 1 integron with dfrA12-orfF-aadA2 cassette array, class 1 integron with dfrA17-aadA5 cassette array, class 1 integron with aadA2 cassette, class 1 integron with blaVIM2 cassette, class 1 and class 2 integron with dfrA1-sat1-aadA1 and dfrA12-orfF-aadA2 cassette arrays simultaneously, which was accordantly with the previous data. The optimized high flux LAMP assay was proceeded in water bath at 65 °C for 60 min and determined by naked eye, with the time consumption restricted within 2.5 h. Prior to conventional PCR method, the high flux LAMP assay was demonstrated as a highly-specific and highly-sensitive method. This study offered a valid LAMP method in resistance integrons detection for laboratory use, which was time-saving and easy-determination.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China; Centre for Translational Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yue-Ting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Dong-Hua Feng
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China; Centre for Translational Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Shu-Xian Wen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China; Centre for Translational Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Dan-Hong Su
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Ling Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China; Centre for Translational Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
38
|
Liu ML, Xia Y, Wu XZ, Huang JQ, Guo XG. Loop-mediated isothermal amplification of Neisseria gonorrhoeae porA pseudogene: a rapid and reliable method to detect gonorrhea. AMB Express 2017; 7:48. [PMID: 28233287 PMCID: PMC5323338 DOI: 10.1186/s13568-017-0349-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Gonorrhea is a sexually transmitted disease caused by the bacterium Neisseria gonorrhoeae. Rapid detection is crucial for effective prevention and treatment. This study developed and tested a low-cost effective method for detecting N. gonorrhoeae, especially in developing countries. METHODS DNA from a N. gonorrhoeae standard strain, as well as from 26 genital secretion samples of gonorrhea patients, were isolated and used for loop-mediated isothermal amplification (LAMP) assay, which was conducted using either an automatic real-time PCR analyzer or a water bath. The amplified porA pseudogene sequence was compared with the NCBI database and the LAMP results were compared with that of the traditional culture method for its sensitivity and specificity. RESULTS LAMP was able to detect Neisseria DNA at a concentration as low as 1 pg/µL (1 × 103 CFU/mL cells). The LAMP assay results obtained using an automatic real-time PCR analyzer was similar to that of the water bath. Relative to traditional culture, the sensitivity and specificity of the LAMP assay were 94.7 and 85.7%, respectively. CONCLUSION LAMP was sensitive and reliable for detecting the porA gene of N. gonorrhoeae. It could be used as a rapid, low cost, and effective method for detecting N. gonorrhoeae.
Collapse
|
39
|
Li Y, Yang L, Fu J, Yan M, Chen D, Zhang L. The novel loop-mediated isothermal amplification based confirmation methodology on the bacteria in Viable but Non-Culturable (VBNC) state. Microb Pathog 2017; 111:280-284. [DOI: 10.1016/j.micpath.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023]
|
40
|
Zhong H, Zhong Y, Deng Q, Zhou Z, Guan X, Yan M, Hu T, Luo M. Virulence of thermolable haemolysi tlh, gastroenteritis related pathogenicity tdh and trh of the pathogens Vibrio Parahemolyticus in Viable but Non-Culturable (VBNC) state. Microb Pathog 2017; 111:352-356. [DOI: 10.1016/j.micpath.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
41
|
Lin Q, Xu P, Li J, Huang J, Chen Y, Deng S. Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae. Microb Pathog 2017; 111:446-449. [PMID: 28923604 DOI: 10.1016/j.micpath.2017.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/15/2022]
Abstract
As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus.
Collapse
Affiliation(s)
- Qun Lin
- Department of Respiratory, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China
| | - Pusheng Xu
- Department of Respiratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Jiaowu Li
- Department of Respiratory, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China
| | - Jinhua Huang
- Department of Respiratory, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China
| | - Yin Chen
- Department of Respiratory, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China
| | - Shuhuan Deng
- Department of Respiratory, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China
| |
Collapse
|
42
|
Microbial pathogenicity and virulence mediated by integrons on Gram-positive microorganisms. Microb Pathog 2017; 111:481-486. [PMID: 28923605 DOI: 10.1016/j.micpath.2017.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/22/2022]
Abstract
Gram-positive microorganisms are one of leading pathogenic microorganisms in public health, including several typical "Super Bugs" as methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae carbapenemase and vancomycin-resistant enterococci, which caused a increasement of infections, clinical failures and expenses. Regarded as a common genetic element responsible for horizontal gene transfer, integrons are widely distributed in various pathogens considered as a determinant in the acquisition and evolution of antibiotic resistance. Current investigations mainly focus on the distribution of integrons in Gram-negative microorganisms, while the role of integron in antibiotic resistance among Gram-positive microorganisms remains unclear and need investigation. To date, the surveillances of integrons in Gram-positive microorganism have been widely conducted in clinic, community even husbandry. China remains one of the worst country in antibiotics abuse worldwide and considered as a potential area for the prevalence of antimicrobial microorganisms and the occurrence of various 'Super Bugs'. Recently, the surveillance of the occurrence of integron and resistance gene cassettes was conducted in South China during the first 10 years of the 21st century. Referred to the surveillance in South China and other investigation in Asian countries, this review aims to summarize the occurrence, pathogenicity and virulence mediated by integrons in typical Gram-positive microorganisms (Staphylococcus, Enterococcus, Corynebacterium and Streptococcus) and the role of integrons in antibiotic resistance.
Collapse
|
43
|
Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Microb Pathog 2017; 110:678-681. [DOI: 10.1016/j.micpath.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 02/04/2023]
|
44
|
Xu Z, Xu X, Qi D, Yang L, Li B, Li L, Li X, Chen D. Effect of aminoglycosides on the pathogenic characteristics of microbiology. Microb Pathog 2017; 113:357-364. [PMID: 28867624 DOI: 10.1016/j.micpath.2017.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Infections caused by pathogen remain to be one of the most important global health issues, and scientists are devoting themselves to seeking effective treatments. Aminoglycoside antibiotics are one kind of widely used antibiotics because of the good efficiency and broad antimicrobial-spectrum. However, it causes some unexpected effects on the pathogenic characteristics of microbiology during the treatment, such as drug resistance and biofilm promotion. Drug resistance is partly due to antibiotics abuse. Simultaneously, aminoglycoside is documented to make divergent effects on biofilm based on their concentrations. Here, we review the mechanism of drug resistance caused by long-term use of aminoglycoside antibiotics, the effects of antibiotic concentration on biofilm formation and the negative effects on intestinal flora to provide theoretical supports for rational use of antibiotics.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
| | - Xingyong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Da Qi
- BGI-Shenzhen, Shenzhen 518083, PR China
| | - Ling Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
| | - Xiaoxi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China.
| | - Dingqiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, PR China
| |
Collapse
|
45
|
Bao X, Yang L, Chen L, Li B, Li L, Li Y, Xu Z. Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science. Microb Pathog 2017; 109:280-286. [DOI: 10.1016/j.micpath.2017.05.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
|
46
|
Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, Shirtliff ME. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb Pathog 2017; 110:257-261. [PMID: 28668605 DOI: 10.1016/j.micpath.2017.06.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The present study aimed at investigating the capability of L. plantarum strain BM-LP14723 to enter into and recover from the viable but nonculturable (VBNC) state and to cause beer spoilage. METHODS VBNC state was induced by incubating in beer with subculturing or low temperature treatment. Culturable, total, and viable cells numbers were assessed by MRS agar plate counting, acridine orange direct counting, and Live/Dead BacLight bacterial viability kit, respectively. Organic acids concentrations were measured by reversed-phase high performance liquid chromatography. RESULTS VBNC L. plantarum cells were detected after 189 ± 1.9 days low temperature treatment or 29 ± 0.7 subcultures in beer. The VBNC L. plantarum retained spoilage capability. Addition of catalase is an effective method for the recovery of the VBNC L. plantarum cells. CONCLUSION L. plantarum strain BM-LP14723 is capable of entering into and recovery from the VBNC state and maintained spoilage capability. The current study presented that beer-spoilage L. plantarum can hide both in breweries and during transporting and marketing process and thus lead to beer-spoilage incidents.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Brian M Peters
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yang Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
47
|
Miao J, Chen L, Wang J, Wang W, Chen D, Li L, Li B, Deng Y, Xu Z. Evaluation and application of molecular genotyping on nosocomial pathogen-methicillin-resistant Staphylococcus aureus isolates in Guangzhou representative of Southern China. Microb Pathog 2017; 107:397-403. [DOI: 10.1016/j.micpath.2017.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
|
48
|
Xie J, Peters BM, Li B, Li L, Yu G, Xu Z, Shirtliff ME. Clinical features and antimicrobial resistance profiles of important Enterobacteriaceae pathogens in Guangzhou representative of Southern China, 2001–2015. Microb Pathog 2017; 107:206-211. [DOI: 10.1016/j.micpath.2017.03.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
|
49
|
Liu J, Li L, Peters BM, Li B, Chen D, Xu Z, Shirtliff ME. Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426. Microb Pathog 2017; 108:55-60. [PMID: 28479507 DOI: 10.1016/j.micpath.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to investigate the genetic characteristics of Bacillus thuringiensis strain BM-BT15426. METHODS B. thuringiensis strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. The genome was sequenced using PacBio RS II sequencers and assembled de novo using HGAP. Also, further genome annotation was performed. RESULTS The genome of B. thuringiensis strain BM-BT15426 has a length of 5,246,329 bp and contains 5409 predicted genes with an average G + C content of 35.40%. Three genes were involved in the "Infectious diseases: Amoebiasis" pathway. A total of 21 virulence factors and 9 antibiotic resistant genes were identified. CONCLUSIONS The major pathogenic factors of B. thuringiensis strain BM-BT15426 were identified through complete genome sequencing and bioinformatics analyses which contributes to further study on pathogenic mechanism and phenotype of B. thuringiensis.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN 38163, USA
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Brian M Peters
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis TN 38163, USA
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Dingqiang Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore MD 21201, USA.
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore MD 21201, USA
| |
Collapse
|
50
|
Hong J. Development and application of the loop-mediated isothermal amplification assay for rapid detection of enterotoxigenicClostridium perfringensin food. J Food Saf 2017. [DOI: 10.1111/jfs.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonbae Hong
- Food & Microbiology Team, Test & Research Department; Consumer Safety Center, Korea Consumer Agency; Chungcheongbukdo 27738 South Korea
| |
Collapse
|