1
|
Zheng Q, Long S, Chen Z, Fu J, Ju X, Li L. Characterization of a novel ribose-5-phosphate isomerase B from Curtobacterium flaccumfaciens ZXL1 for D-allose production. Food Sci Biotechnol 2024; 33:1641-1649. [PMID: 38623425 PMCID: PMC11016020 DOI: 10.1007/s10068-023-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Enzymatic preparation of rare sugars as an alternative to traditional sweeteners is an effective strategy to achieve a low-calorie healthy diet. Ribose-5-phosphate isomerase B (RpiB) is a key enzyme in the non-oxidative branch of the catalytic pentose phosphate pathway. Here, we investigated the potential of Curtobacterium flaccumfaciens ZXL1 (C. flaccumfaciens ZXL1) derived RpiB (CfRpiB) in D-allose preparation. The optimal reaction conditions for recombinant CfRpiB were found experimentally to be pH 7.0, 55 °C, and no metal ions. The kinetic parameters Km, kcat, and catalytic efficiency kcat/Km were 320 mM, 4769 s-1, and 14.9 mM-1 s-1 respectively. The conversion of D-allulose by purified enzyme (1 g L-1 ) to D-allose was 13% within 1 h. In addition, homology modeling and molecular docking were used to predict the active site residues: Asp13, Asp14, Cys72, Gly73, Thr74, Gly77, Asn106, and Lys144.
Collapse
Affiliation(s)
- Qian Zheng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Si Long
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Jiaolong Fu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| |
Collapse
|
2
|
Wang R, Xu X, Yao X, Tang H, Ju X, Li L. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1. Enzyme Microb Technol 2021; 148:109789. [PMID: 34116752 DOI: 10.1016/j.enzmictec.2021.109789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Ribose-5-phosphate isomerase A (RpiA) is of great importance in biochemistry research, however its application in biotechnology has not been fully explored. In this study the activity of RpiA from Ochrobactrum sp. CSL1 (OsRpiA) towards D-allose was engineered based on sequential and structural analyses. Strategies of alanine scanning, rational design and saturated mutagenesis were employed to create three mutant libraries. A single mutant of K124A showed a 45 % activity improvement towards D-allose. The reaction properties of the mutant were analyzed, and a shift of optimal pH and higher thermal stability at low reaction temperatures were identified. The conversion of D-allose was also improved by 40 % using K124A, and higher activities on major substrates were found in the mutant's substrate scope, implying its application potential in rare sugar preparation. Kinetics analysis revealed that Km of K124A mutant decreased by 12 % and the catalytic efficiency increased by 65 % towards D-allose. Moreover, molecular dynamics simulation illustrated the binding of substrate and K124A was more stable than that of the wild-type. The shorter distance and more relax bond angle between the catalytic residue of K124A and D-allose explained the activity improvement in detail. This study highlights the potential of OsRpiA as a biocatalyst for rare sugar preparation, and provides distinct evidences for its catalytic mechanism.
Collapse
Affiliation(s)
- Rong Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xinqi Xu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biosciences and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xuemei Yao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
3
|
Tang H, Ju X, Zhao J, Li L. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Appl Microbiol Biotechnol 2021; 105:509-523. [PMID: 33394147 DOI: 10.1007/s00253-020-11075-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Ribose-5-phosphate isomerase B (RpiB) was first identified in the pentose phosphate pathway responsible for the inter-conversion of ribose-5-phosphate and ribulose-5-phosphate. Though there are seldom key enzymes in central carbon metabolic system developed as useful biocatalysts, RpiB with the advantages of wide substrate scope and high stereoselectivity has become a potential biotechnological tool to fulfill the demand of rare sugars currently. In this review, the pivotal roles of RpiB in carbon metabolism are summarized, and their sequence identity and structural similarity are discussed. Substrate binding and catalytic mechanisms are illustrated to provide solid foundations for enzyme engineering. Interesting differences in origin, physiological function, structure, and catalytic mechanism between RpiB and ribose-5-phosphate isomerase A are introduced. Moreover, enzyme engineering efforts for rare sugar production are stressed, and prospects of future development are concluded briefly in the viewpoint of biocatalysis. Aided by the progresses of structural and computational biology, the application of RpiB will be promoted greatly in the preparation of valuable molecules. KEY POINTS: • Detailed illustration of RpiB's vital function in central carbon metabolism. • Potential of RpiB in sequence, substrate scope, and mechanism for application. • Enzyme engineering efforts to promote RpiB in the preparation of rare sugars.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Phosphate sugar isomerases and their potential for rare sugar bioconversion. J Microbiol 2020; 58:725-733. [PMID: 32583284 DOI: 10.1007/s12275-020-0226-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Phosphate sugar isomerases, catalyzing the isomerization between ketopentose/ketohexose phosphate and aldopentose/aldohexose phosphate, play an important role in microbial sugar metabolism. They are present in a wide range of microorganisms. They have attracted increasing research interest because of their broad substrate specificity and great potential in the enzymatic production of various rare sugars. Here, the enzymatic properties of various phosphate sugar isomerases are reviewed in terms of their substrate specificities and their applications in the production of valuable rare sugars because of their functions such as low-calorie sweeteners, bulking agents, and pharmaceutical precursor. Specifically, we focused on the industrial applications of D-ribose-5-phosphate isomerase and D-mannose-6-phosphate isomerase to produce D-allose and L-ribose, respectively.
Collapse
|
5
|
Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol 2020; 104:6429-6441. [PMID: 32533303 DOI: 10.1007/s00253-020-10735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Ribose-5-phosphate isomerase (Rpi, EC 5.3.1.6) is widespread in microorganisms, animals, and plants. It has a pivotal role in the pentose phosphate pathway and responsible for catalyzing the isomerization between D-ribulose 5-phosphate and D-ribose 5-phosphate. In recent years, Rpi has received considerable attention as a multipurpose biocatalyst for production of rare sugars, including D-allose, L-rhamnulose, L-lyxose, and L-tagatose. Besides, it has been thought of as a potential drug target in the treatment of trypanosomatid-caused diseases such as Chagas' disease, leishmaniasis, and human African trypanosomiasis. Despite increased research activities, up to now, no systematic review of Rpi has been published. To fill this gap, this paper provides detailed information about the enzymatic properties of various Rpis. Furthermore, structural features, catalytic mechanism, and molecular modifications of Rpis are summarized based on extensive crystal structure research. Additionally, the applications of Rpi in rare sugar production and the role of Rpi in trypanocidal drug design are reviewed. Key points • Fundamental properties of various ribose-5-phosphate isomerases (Rpis). • Differences in crystal structure and catalytic mechanism between RpiA and RpiB. • Application of Rpi as a rare sugar producer and a potential drug target.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
6
|
Advances in the enzymatic production of L-hexoses. Appl Microbiol Biotechnol 2016; 100:6971-9. [PMID: 27344591 DOI: 10.1007/s00253-016-7694-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy.
Collapse
|
7
|
Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. SCIENCE ADVANCES 2016; 2:e1501235. [PMID: 26824074 PMCID: PMC4730858 DOI: 10.1126/sciadv.1501235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andre Zylstra
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alexandra V. Turchyn
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
8
|
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci U S A 2014; 111:15928-33. [PMID: 25355907 DOI: 10.1073/pnas.1413470111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
Collapse
|
9
|
Beerens K, Desmet T, Soetaert W. Enzymes for the biocatalytic production of rare sugars. ACTA ACUST UNITED AC 2012; 39:823-34. [DOI: 10.1007/s10295-012-1089-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., l-nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto–aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.
Collapse
Affiliation(s)
- Koen Beerens
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Tom Desmet
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Wim Soetaert
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| |
Collapse
|