1
|
Wang YC, Ning HW, Yan QJ, Liu HJ, Li YX, Jiang ZQ. Enzymatic modification of wheat starch by a novel maltotetraose-forming amylase from Atopomonas hussainii to retard retrogradation and improve bread quality. Carbohydr Polym 2025; 348:122909. [PMID: 39567141 DOI: 10.1016/j.carbpol.2024.122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
To retard starch retrogradation and improve bread quality, a novel maltotetraose-forming amylase (AhMFA) from Atopomonas hussainii was expressed in Komagataella phaffii. After high cell density fermentation, the enzyme activity reached a maximum level of 3032 U mL-1. AhMFA showed optimal activity at pH 6.0 and 55 °C, respectively. After raw wheat starch was treated with AhMFA at 55 °C for 1 h, the relative crystallinity decreased from 24.5 % to 20.8 % without changing the A-type crystalline pattern. The side chain components with A, B1 and B2 chains were reduced to 27.5 %, 44.9 %, and 13.8 %, respectively. The retrogradation enthalpy of wheat starch decreased significantly by 67.8 %. Moreover, the decreased Mixolab parameters (C5 and C5 - C4) indicated that AhMFA reduced starch retrogradation of wheat dough. After addition of AhMFA (3 ppm), the specific volume of bread increased by 29.5 % and its hardness decreased by 46.1 % compared to the control. The AhMFA-added bread exhibited good anti-staling properties with 43.7 % less hardness than the control after storage at 4 °C for 4 days. This study provided a novel maltotetraose-forming amylase for starch modification to retard retrogradation and improve bread quality.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hao-Wei Ning
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Jie Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan-Xiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zheng-Qiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
2
|
Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol 2023; 14:1218708. [PMID: 37529326 PMCID: PMC10388556 DOI: 10.3389/fmicb.2023.1218708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The cold adapted microorganisms, psychrophiles/psychrotolerants, go through several modifications at cellular and biochemical levels to alleviate the influence of low temperature stress conditions. The low temperature environments depend on these cold adapted microorganisms for various ecological processes. The ability of the microorganisms to function in cold environments depends on the strategies directly associated with cell metabolism, physicochemical constrains, and stress factors. Pseudomonas is one among such group of microorganisms which is predominant in cold environments with a wide range of ecological and biotechnological applications. Bioformulations of Pseudomonas spp., possessing plant growth promotion and biocontrol abilities for application under low temperature environments, are well documented. Further, recent advances in high throughput sequencing provide essential information regarding the prevalence of Pseudomonas in rhizospheres and their role in plant health. Cold adapted species of Pseudomonas are also getting recognition for their potential in biodegradation and bioremediation of environmental contaminants. Production of enzymes and bioactive compounds (primarily as an adaptation mechanism) gives way to their applications in various industries. Exopolysaccharides and various biotechnologically important enzymes, produced by cold adapted species of Pseudomonas, are making their way in food, textiles, and pharmaceuticals. The present review, therefore, aims to summarize the functional versatility of Pseudomonas with particular reference to its peculiarities along with the ecological and biotechnological applications.
Collapse
Affiliation(s)
- Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ayushi Kimothi
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Su L, Yang Y, Wu J. Recombinant expression, characterization and application of maltotetraohydrolase from Pseudomonas saccharophila. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3456-3464. [PMID: 32167164 DOI: 10.1002/jsfa.10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maltotetraohydrolase, widely used in food and medical fields, possesses the ability to hydrolyze starch to produce maltooligosaccharides with maltotetraose as the main product. It also has the potential usage in delaying bread aging. RESULTS Pseudomonas saccharophila maltotetraohydrolase was expressed in Bacillus subtilis WS11. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed obvious bands at 57 kDa (maltotetraohydrolase I) and 47 kDa (maltotetraohydrolase II). Both showed similar enzymatic properties, although the catalytic efficiency of maltotetraohydrolase I was 4.93 fold higher than that of maltotetraohydrolase II using soluble starch as substrate. In addition, the maltotetraohydrolase production was further scaled up in a 3-L fermentor, and the highest activity reached 1907 U mL-1 . Then, the recombinant maltotetraohydrolase was used to produce maltotetraose. The maltotetraose yields catalyzed by maltotetraohydrolase I and II reached 73.2% and 69.7%, respectively. Finally, when recombinant maltotetraohydrolase was used in bread-making, texture profile analysis of the bread indicated recombinant maltotetraohydrolase I exhibited a significant anti-aging effect. CONCLUSION This is the first describing high-efficient expression of P. saccharophila maltotetraohydrolase in the food safety strain B. subtilis, and the yield represented the highest level ever reported. Excellent results were also obtained with respect to the preparation of maltotetraose and delaying bread aging using the recombinant maltotetraohydrolase. The present study will help lay the foundation for the industrial production and application of maltotetraohydrolase. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanan Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Sathya T, Khan M. Diversity of Glycosyl Hydrolase Enzymes from Metagenome and Their Application in Food Industry. J Food Sci 2014; 79:R2149-56. [DOI: 10.1111/1750-3841.12677] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- T.A. Sathya
- Academy of Scientific and Innovative Research; New Delhi India
- CSIR-Central Food Technological Research Institute; Mysore-20 Karnataka India
| | - Mahejibin Khan
- Academy of Scientific and Innovative Research; New Delhi India
- CSIR-Central Food Technological Research Institute; Mysore-20 Karnataka India
| |
Collapse
|
5
|
Maalej H, Hmidet N, Ghorbel-Bellaaj O, Nasri M. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0862-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Delavat F, Phalip V, Forster A, Plewniak F, Lett MC, Lièvremont D. Amylases without known homologues discovered in an acid mine drainage: significance and impact. Sci Rep 2012; 2:354. [PMID: 22482035 PMCID: PMC3319935 DOI: 10.1038/srep00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/08/2012] [Indexed: 12/25/2022] Open
Abstract
Acid Mine Drainages (AMDs) are extreme environments characterized by acidic and oligotrophic conditions and by metal contaminations. A function-based screening of an AMD-derived metagenomic library led to the discovery and partial characterization of two non-homologous endo-acting amylases sharing no sequence similarity with any known amylase nor glycosidase. None carried known amylolytic domains, nor could be assigned to any GH-family. One amylase displayed no similarity with any known protein, whereas the second one was similar to TraC proteins involved in the bacterial type IV secretion system. According to the scarce similarities with known proteins, 3D-structure modelling using I-TASSER was unsuccessful. This study underlined the utility of a function-driven metagenomic approach to obtain a clearer image of the bacterial community enzymatic landscape. More generally, this work points out that screening for microorganisms or biomolecules in a priori incongruous environments could provide unconventional and new exciting ways for bioprospecting.
Collapse
|
7
|
Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 2012; 28:2249-56. [PMID: 22806048 DOI: 10.1007/s11274-012-1032-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/25/2012] [Indexed: 11/29/2022]
Abstract
Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.
Collapse
Affiliation(s)
- Lyliam Loperena
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Martínez-Rosales C, Fullana N, Musto H, Castro-Sowinski S. Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 2012; 331:1-9. [PMID: 22360528 DOI: 10.1111/j.1574-6968.2012.02531.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/09/2012] [Accepted: 02/18/2012] [Indexed: 02/06/2023] Open
Abstract
Antarctica is the coldest, driest, and windiest continent, where only cold-adapted organisms survive. It has been frequently cited as a pristine place, but it has a highly diverse microbial community that is continually seeded by nonindigenous microorganisms. In addition to the intromission of 'alien' microorganisms, global warming strongly affects microbial Antarctic communities, changing the genes (qualitatively and quantitatively) potentially available for horizontal gene transfer. Several mobile genetic elements have been described in Antarctic bacteria (including plasmids, transposons, integrons, and genomic islands), and the data support that they are actively involved in bacterial evolution in the Antarctic environment. In addition, this environment is a genomic source for the identification of novel molecules, and many investigators have used culture-dependent and culture-independent approaches to identify cold-adapted proteins. Some of them are described in this review. We also describe studies for the design of new recombinant technologies for the production of 'difficult' proteins.
Collapse
|