1
|
Duraisamy S, Husain F, Balakrishnan S, Sathyan A, Subramani P, Chidambaram P, Arokiyaraj S, Al-Qahtani WH, Rajabathar J, Kumarasamy A. Phenotypic Assessment of Probiotic and Bacteriocinogenic Efficacy of Indigenous LAB Strains from Human Breast Milk. Curr Issues Mol Biol 2022; 44:731-749. [PMID: 35723336 PMCID: PMC8929004 DOI: 10.3390/cimb44020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast milk is the combination of bioactive compounds and microflora that promote newborn’s proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities—especially lactic acid bacteria (LAB)—are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | | | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
| | - Prabhu Subramani
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, India; (P.S.); (P.C.)
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea;
| | - Wahidah H. Al-Qahtani
- Department of Food Science and Nutrition, College of Food & Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India; (S.D.); (F.H.); (A.S.)
- Correspondence:
| |
Collapse
|
2
|
Trejo-González L, Gutiérrez-Carrillo AE, Rodríguez-Hernández AI, Del Rocío López-Cuellar M, Chavarría-Hernández N. Bacteriocins Produced by LAB Isolated from Cheeses within the Period 2009-2021: a Review. Probiotics Antimicrob Proteins 2021; 14:238-251. [PMID: 34342858 PMCID: PMC8329406 DOI: 10.1007/s12602-021-09825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
A survey is presented concerning original research articles published in well-reputed scientific journals on the isolation of lactic acid bacteria (LAB) from cheeses worldwide, where researchers evaluated the bacteriocin production by such isolates in searching for novel functional peptides that can exhibit potential for biotechnological applications. Seventy-one articles were published in the period of study, with contributions being American (45%), Asiatic (28%), and European (21%), being Brazil-USA-Mexico, Turkey-China, and France-Italy the countries that contributed the most for each said continent, respectively. Most of the isolated LAB belong to the genera Enterococcus (35%), Lactobacillus (30%), Lactococcus (14%), and Pediococcus (10%), coming from soft (64%), hard (27%), and semi-hard (9%) cheeses, predominantly. Also, scholars focused mainly on the food biopreservation (81%) and pharmaceutical field (18%) potential applications.
Collapse
Affiliation(s)
- Lorena Trejo-González
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ana-Estefanía Gutiérrez-Carrillo
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Adriana-Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av, Universidad Km 1, Rancho Universitario, C.P. 43600, Tulancingo, Hidalgo, Mexico.
| |
Collapse
|
3
|
Qi T, Wang S, Deng L, Yi L, Zeng K. Controlling pepper soft rot by Lactobacillus paracasei WX322 and identification of multiple bacteriocins by complete genome sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Rahmeh R, Akbar A, Kishk M, Al Onaizi T, Al-Shatti A, Shajan A, Akbar B, Al-Mutairi S, Yateem A. Characterization of semipurified enterocins produced by Enterococcus faecium strains isolated from raw camel milk. J Dairy Sci 2018. [PMID: 29525307 DOI: 10.3168/jds.2017-13996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food safety has become an issue of great interest worldwide. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to control in the dairy industry. The use of lactic acid bacteria (LAB) and their antimicrobial substances against Listeria is promising in food applications. Here, we report the isolation from raw camel milk of LAB displaying antilisterial activity. Two isolates were selected for their secretion of bacteriocin(s) and identified by 16S rRNA sequencing as Enterococcus faecium S6 and R9. The produced bacteriocins were partially purified by ammonium sulfate precipitation and then biochemically characterized. Antimicrobial activity was estimated to be 6,400 and 400 AU (arbitrary units)/mL for E. faecium S6 and R9, respectively. The proteinaceous nature of the bacteriocins was confirmed via enzymatic reactions. Moreover, lipolytic and glycolytic enzymes completely inactivated the antimicrobial effect of the bacteriocins. These bacteriocins were heat-resistant and stable over a wide range of pH (2.0 to 10.0). To confirm its inactivation by lipolytic and glycolytic enzymes, the bacteriocin of E. faecium S6 was further purified by gel filtration, which suggested the existence of carbohydrate and lipid moieties. In addition, enterocin-coding genes were identified by PCR, showing DNA fragments corresponding in size to enterocins A, B, and P for E. faecium S6 and to enterocins B and P for E. faecium R9. In conclusion, these results indicate that partially purified bacteriocins from E. faecium S6 and R9 may be beneficial in controlling Listeria in the dairy industry.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait.
| | - Abrar Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Thanyan Al Onaizi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Aisha Al-Shatti
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Batool Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Salwa Al-Mutairi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| | - Awatef Yateem
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat, 13109 Kuwait
| |
Collapse
|
5
|
Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Sadishkumar V, Jeevaratnam K. Purification and partial characterization of antilisterial bacteriocin produced byPediococcus pentosaceusKJBC11 fromIdlibatter fermented withPiper betleleaves. J Food Biochem 2017. [DOI: 10.1111/jfbc.12460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Vishwanathan Sadishkumar
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, 605014 India
| | - Kadirvelu Jeevaratnam
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, 605014 India
| |
Collapse
|
7
|
Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol 2017; 33:186. [DOI: 10.1007/s11274-017-2353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
8
|
Tetili F, Bendali F, Perrier J, Sadoun D. Anti-Staphylococcal Enterotoxinogenesis of Lactococcus lactis in Algerian Raw Milk Cheese. Food Technol Biotechnol 2017. [PMID: 29540985 DOI: 10.17113/ftb.55.04.17.5105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a potential pathogen contaminating raw milk and dairy products, where it is able to produce thermostable enterotoxins that can cause staphylococcal food poisoning. This study was undertaken to investigate the inhibitory activity of a Lactococcus lactis strain (isolated from milk) on S. aureus growth and staphylococcal enterotoxin A (SEA) production. In the presence of L. lactis, the number of the pathogen decreased significantly (p<0.05) after 6 h of incubation in a laboratory medium and milk (3 log CFU/mL reduction compared to pure cultures). SEA concentration was reduced by 79% in the co-cultures. S. aureus was unable to reach population levels permitting SEA production in the cheese inoculated with L. lactis during 32 days of storage. In contrast, during the same period, it attained 7 log CFU/g in the cheese manufactured without the lactococcal strain, a level which permitted SEA detection in the cheese extracts. However, this enterotoxin was never detected in the cheese harbouring L. lactis. These results demonstrate the anti-staphylococcal enterotoxinogenesis potential of the L. lactis strain and its usefulness in raw milk cheese biopreservation.
Collapse
Affiliation(s)
- Fatiha Tetili
- Applied Microbiology Laboratory, Life and Nature Sciences Faculty, Bejaia University, DZ-06000 Bejaia, Algeria
| | - Farida Bendali
- Applied Microbiology Laboratory, Life and Nature Sciences Faculty, Bejaia University, DZ-06000 Bejaia, Algeria
| | - Josette Perrier
- Paul Cézanne Aix-Marseille III University, Group Molecular Interactions Intestinal Mucosal Microbiote, ISM2-Biosciences UMR CNRS 6263, Faculty of Sciences,
FR-13397 Marseille Cedex 20, France
| | - Djamila Sadoun
- Applied Microbiology Laboratory, Life and Nature Sciences Faculty, Bejaia University, DZ-06000 Bejaia, Algeria
| |
Collapse
|
9
|
Bacteriocin-Producing Lactic Acid Bacteria Isolated from Mangrove Forests in Southern Thailand as Potential Bio-Control Agents: Purification and Characterization of Bacteriocin Produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics Antimicrob Proteins 2016; 5:264-78. [PMID: 26783072 DOI: 10.1007/s12602-013-9150-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70 % saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254 Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0-10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8 weeks of storage at -20 °C and 7 weeks of storage at 4 °C, but decreased after 3 weeks of storage at 37 °C. It was stable when incubated for 1 month at 4 °C in 0-30 % NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99 % homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.
Collapse
|
10
|
Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Elayaraja S, Annamalai N, Mayavu P, Balasubramanian T. Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac J Trop Biomed 2014; 4:S305-11. [PMID: 25183102 DOI: 10.12980/apjtb.4.2014c537] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To study the production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 isolated from marine sediments and its broad spectrum of inhibition against fish pathogens. METHODS The selected strain was used in production, purification and characterized of bacteriocin. In addition, purified bacteriocin was tested for its antimicrobial activity against fish pathogens. RESULTS In the present study, the bacteriocin production was found to be higher at 35 °C, pH 6.0 and was purified to 4.74 fold with 55. 38 U/mg of specific activity with the yield of 28.92%. The molecular weight of the purified bacteriocin was estimated as 21 kDa. The purified bacteriocin exhibited complete inactivation of antimicrobial activity when treated with proteinase K, pronase, chymotrypsin, trypsin, pepsin and papain. The purified bacteriocin exhibited broad inhibitory spectrum against both Gram positive and negative bacteria. CONCLUSIONS It is concluded that the ability of bacteriocin in inhibiting a wide-range of pathogenic bacteria is of potential interest for food safety and may have future applications in food preservative.
Collapse
Affiliation(s)
- Sivaramasamy Elayaraja
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Neelamegam Annamalai
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai-608502, Tamilnadu, India
| | - Packiyam Mayavu
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai-608502, Tamilnadu, India
| | - Thangavel Balasubramanian
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai-608502, Tamilnadu, India
| |
Collapse
|
12
|
Pasteris SE, Vera Pingitore E, Ale CE, Nader-Macías MEF. Characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis CRL 1584 isolated from a Lithobates catesbeianus hatchery. World J Microbiol Biotechnol 2013; 30:1053-62. [PMID: 24150985 DOI: 10.1007/s11274-013-1524-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022]
Abstract
Lactococcus lactis CRL 1584 isolated from a Lithobates catesbeianus hatchery inhibits the growth of Citrobacter freundii (a bullfrog pathogen) and Listeria monocytogenes by a synergistic effect between lactic acid, hydrogen peroxide and a bacteriocin-like molecule. The chemical characterization of the bacteriocin in cell-free supernatants indicates that it has a proteinaceous nature. Hexadecane and ethyl acetate did not modify the bacteriocin activity, while 10 and 20 % (v/v) chloroform decreased the activity by 29 and 43 %, respectively. The antimicrobial peptide was heat stable since 85 % of residual activity was detected when neutralized supernatants were heated at 80 °C for 30 min. Moreover, no bacteriocin inactivation was observed when supernatants were kept at -20 °C for 3 months. The synthesis of the bacteriocin was associated with bacterial growth, highest production (2,100 AU/ml) being detected at the end of the exponential growth phase. At pH ranges of 5-6.5 and 5.0-5.5 the inhibitory molecule was stable when stored for 2 days at 4 and 25 °C, respectively. Moreover, it had a bactericidal effect on L. monocytogenes and the ultrastructural studies of pathogenic cells revealed clumping of the cytoplasmic material, increased periplasmic space and cell wall modifications. The deduced amino acid sequence of the bacteriocin was identical to nisin Z and the genetic determinants for its production are harbored in the chromosome. These results, described for the first time in L. lactis from a bullfrog hatchery, will increase knowledge of the bacteriocin under study with a view to its potential inclusion in probiotics for raniculture or biopreservatives.
Collapse
Affiliation(s)
- Sergio E Pasteris
- Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Instituto de Biología "Dr. Francisco D. Barbieri", Universidad Nacional de Tucumán, Chacabuco 461, CP: T4000ILI, San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
13
|
Vidhyasagar V, Jeevaratnam K. Bacteriocin activity against various pathogens produced byPediococcus pentosaceusVJ13 isolated fromIdlybatter. Biomed Chromatogr 2013; 27:1497-502. [DOI: 10.1002/bmc.2948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Venkatasubramanian Vidhyasagar
- Department of Biochemistry and Molecular Biology; Pondicherry University; R.V. Nagar; Kalapet; Puducherry; 605014; India
| | - Kadirvelu Jeevaratnam
- Department of Biochemistry and Molecular Biology; Pondicherry University; R.V. Nagar; Kalapet; Puducherry; 605014; India
| |
Collapse
|
14
|
Alfred RL, Palombo EA, Panozzo JF, Bariana H, Bhave M. Stability of puroindoline peptides and effects on wheat rust. World J Microbiol Biotechnol 2013; 29:1409-19. [PMID: 23456858 DOI: 10.1007/s11274-013-1304-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Abstract
Peptides modelled on the tryptophan rich domain of puroindolines and the related grain softness protein-1 have a broad range of antibacterial and antifungal activities. With the aims of further investigating the activities of these antimicrobial peptides we studied their activity against wheat rust diseases and environmental stability. PINA-based peptides were found to have high pH and thermal stability in addition to being stable over long periods at room temperature. These properties could make them excellent candidates as preservatives in food. PuroA, Pina-R39G and PuroB peptides adversely affected the morphology of the stripe rust spores (Puccinia striiformis f. sp. tritici), while PuroA and PuroB showed moderate inhibition of their germination. Additionally, GSP-5D reduced the germination of leaf rust spores (P. triticina). PuroA and PuroB sprayed onto stripe rust infected plants effected a moderate reduction in the number of stripe rust uredinia on wheat seedlings, as did PuroB sprayed onto the seedlings and allowed to coat the leaves for 5 day prior to spore infection. The results suggest that the presence of the PIN-based peptides may lower frequency of initial infection foci.
Collapse
Affiliation(s)
- Rebecca L Alfred
- Faculty of Life and Social Sciences, Environment and Biotechnology Centre, Swinburne University of Technology, PO Box 218, Melbourne, VIC 3122, Australia
| | | | | | | | | |
Collapse
|