1
|
Marciano CL, de Almeida AP, Bezerra FC, Giannesi GC, Cabral H, Teixeira de Moraes Polizeli MDL, Ruller R, Masui DC. Enhanced saccharification levels of corn starch using as a strategy a novel amylolytic complex (AmyHb) from the thermophilic fungus Humicola brevis var. thermoidea in association with commercial enzyme. 3 Biotech 2024; 14:198. [PMID: 39131173 PMCID: PMC11310185 DOI: 10.1007/s13205-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Amylases represent a versatile group of catalysts that are used for the saccharification of starch because they can hydrolyze the glycosidic bonds of starch molecules to release glucose, maltose, and short-chain oligosaccharides. The amylolytic complex of the thermophilic filamentous fungus Humicola brevis var. thermoidea (AmyHb) was produced, biochemically characterized, and compared with the commercial amylase Termamyl. In addition, the biotechnological application of AmyHb in starch saccharification was investigated. The highest production was achieved using a wheat bran medium at 50 °C for 5-6 days in solid-state fermentation (849.6 ± 18.2 U·g-1) without the addition of inducers. Optimum amylolytic activity occurred at pH 5.0 at 60 °C, and stability was maintained between pH 5.0 and 6.0, with thermal stability at 50-60 °C, especially in the presence of Ca2+. These results were superior to those found with Termamyl. Both enzymes were strongly inhibited by Hg2+, Cu2+, and Ag+; however, AmyHb displayed increased activity in the presence of Mn2+ and Na+. In addition, AmyHb showed greater tolerance to a wide range of ethanol concentrations. AmyHb appears to be a complex consisting of glucoamylase and α-amylase, based on its substrate specificity and TLC. The hydrolysis tests on cornstarch flour showed that the cocktail of AmyHb50% + Termamyl50% significantly increased the release of glucose and total reducing sugars (36.6%) when compared to the enzymes alone. AmyHb exhibited promising physicochemical properties and good performance with commercial amylase; therefore, this complex is a biotechnological alternative candidate for the bioprocessing of starch sources.
Collapse
Affiliation(s)
- Camila Langer Marciano
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | - Aline Pereira de Almeida
- Faculdade de Medicina de Ribeirão Preto, FMRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14049-900 Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
| | - Fabiane Cruz Bezerra
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Giovana Cristina Giannesi
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | | | - Roberto Ruller
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, São José do Rio Preto, SP CEP: 15054-000 Brazil
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC - UFABC, Santo André, SP CEP: 09210-170 Brazil
| | - Douglas Chodi Masui
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| |
Collapse
|
2
|
Zou Y, Ye F, Zhang Z, Liu X, Zhao G. Heat-moisture treatment can modulate all-purpose wheat flour for short dough biscuit making: Evidences and mechanism. Food Chem 2024; 451:139512. [PMID: 38718641 DOI: 10.1016/j.foodchem.2024.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In view of the merits of all-purpose wheat flour (APWF) to soft wheat flour (SWF) in cost and protein supply, the feasibility of heat-moisture treatment (HMT, 19% moisture for 1 h at 60, 80 and 100 °C, respectively) to modify APWF as a substitute SWF in making short dough biscuits was explored. For underlying mechanisms, on the one hand, HMT reduced the hydration capacity of damaged starch particles by coating them with denatured proteins. On the other hand, HMT at 80 °C and 100 °C significantly denatured gluten proteins to form protein aggregates, highly weakening the gluten network in dough. These two aspects jointly conferred APWF dough with higher deformability and therefore significantly improved the qualities of biscuits. Moreover, the qualities of biscuits from APWF upon HMT-100 °C were largely comparable to that from SWF, even higher values were concluded in spread ratio, volume, specific volume and consumer acceptance.
Collapse
Affiliation(s)
- Yiyuan Zou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoqing Liu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
de Andrades D, Alnoch RC, Alves GS, Salgado JCS, Almeida PZ, Berto GL, Segato F, Ward RJ, Buckeridge MS, Polizeli MDLTM. Recombinant GH3 β-glucosidase stimulated by xylose and tolerant to furfural and 5-hydroxymethylfurfural obtained from Aspergillus nidulans. BIORESOUR BIOPROCESS 2024; 11:77. [PMID: 39073555 PMCID: PMC11286919 DOI: 10.1186/s40643-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The β-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified β-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (β/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.
Collapse
Affiliation(s)
- Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Robson C Alnoch
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Enzymology and Molecular Biology of Microorganisms, Institute of Biology, Campinas State University (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paula Z Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, 12602-810, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | | | - Maria de Lourdes T M Polizeli
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Alserae H, Deng S. Assay of cellulose 1,4-β-cellobiosidase activity in soil. J Microbiol Methods 2023; 215:106861. [PMID: 38030086 DOI: 10.1016/j.mimet.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
As the most abundant biopolymer on earth, cellulose undergoes degradation by a diverse set of enzymes with varying specificities that act in synergism. An assay protocol was developed to detect and quantify activity of cellulose 1,4-β-cellobiosidase (EC 3.2.1.91) in soil. The optimum pH and temperature for β-cellobiosidase activity were approximately pH 5.5 and 60 °C, respectively. In the tested six soils, the Michaelis constants (Km) ranged from 0.08 to 0.51 mM, and maximum velocity (Vmax) ranged from 71.5 to 318.1 μmol kg soil-1 h-1. The temperature coefficient (Q10) ranged from 1.72 to 1.99 at non-denaturing temperatures from 10 to 50 °C, and the activation energy (Ea) ranged from 42.5 to 53.7 kJ mol-1. The assay procedure provided reproducible results with a coefficient of variance ≤4.7% and demonstrated a limit of quantification (LOQ) of 50.9 μmol p-nitrophenol release kg-1 soil h-1 for β-cellobiosidase activity in soil. Notably, the developed assay protocol offers reproducibility and precision comparable to bench-scale assays while reducing costs associated with reagents, supplies, and labor.
Collapse
Affiliation(s)
- Hussein Alserae
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA; Department of Soil Sciences and Water Recourses, University of Baghdad, Baghdad, Iraq
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Pereira de Almeida A, Vargas IP, Marciano CL, Zanoelo FF, Giannesi GC, Moraes Polizeli MDLTD, Jorge JA, Furriel RDPM, Ruller R, Masui DC. Investigation of biochemical and biotechnological potential of a thermo-halo-alkali-tolerant endo-xylanase (GH11) from Humicola brevis var. thermoidea for lignocellulosic valorization of sugarcane biomass. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Alokika, Singh B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 2019; 103:8763-8784. [PMID: 31641815 DOI: 10.1007/s00253-019-10108-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023]
Abstract
Microbial xylanases have gathered great attention due to their biotechnological potential at industrial scale for many processes. A variety of lignocellulosic materials, such as sugarcane bagasse, rice straw, rice bran, wheat straw, wheat bran, corn cob, and ragi bran, are used for xylanase production which also solved the great issue of solid waste management. Both solid-state and submerged fermentation have been used for xylanase production controlled by various physical and nutritional parameters. Majority of xylanases have optimum pH in the range of 4.0-9.0 with optimum temperature at 30-60 °C. For biochemical, molecular studies and also for successful application in industries, purification and characterization of xylanase have been carried out using various appropriate techniques. Cloning and genetic engineering are used for commercial-level production of xylanase, to meet specific economic viability and industrial needs. Microbial xylanases are used in various biotechnological applications like biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. This review describes production, characteristics, and biotechnological applications of microbial xylanases.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
8
|
Costa ACD, Cavalheiro GF, Vieira ERDQ, Gandra JR, Goes RHDTEBD, Paz MFD, Fonseca GG, Leite RSR. Catalytic properties of xylanases produced by Trichoderma piluliferum and Trichoderma viride and their application as additives in bovine feeding. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Sci Rep 2017. [PMID: 28634326 PMCID: PMC5478631 DOI: 10.1038/s41598-017-04262-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Low cost and high efficiency cellulolytic cocktails can consolidate lignocellulosic ethanol technologies. Sugarcane bagasse (SCB) is a low cost agro-industrial residue, and its use as a carbon source can reduce the costs of fungi cultivation for enzyme production. Chrysoporthe cubensis grown under solid state fermentation (SSF) with wheat bran has potential to produce efficient enzymatic extracts for SCB saccharification. This fungus was grown under submersed fermentation (SmF) and SSF with in natura SCB, pretreated with acid or alkali and with others carbon sources. In natura SCB induced the highest carboxymethylcellulase (CMCase), xylanase, β-xylosidase, α-galactosidase and mannanase activities by C. cubensis under SSF. In natura and washed SCB, inducers of enzyme production under SSF, did not induce high cellulases and hemicellulases production by C. cubensis in SmF. The C. cubensis enzymatic extract produced under SSF with in natura SCB as a carbon source was more efficient for lignocelulolic biomass hydrolysis than extracts produced under SSF with wheat bran and commercial cellulolytic extract. Chrysoporthe cubensis showed high potential for cellulases and hemicellulases production, especially when grown under SSF with in natura SCB as carbon source.
Collapse
|
10
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
11
|
García-Huante Y, Cayetano-Cruz M, Santiago-Hernández A, Cano-Ramírez C, Marsch-Moreno R, Campos JE, Aguilar-Osorio G, Benitez-Cardoza CG, Trejo-Estrada S, Hidalgo-Lara ME. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles 2016; 21:175-186. [PMID: 27900528 DOI: 10.1007/s00792-016-0893-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
A hyperthermophilic and thermostable xylanase of 82 kDa (TtXynA) was purified from the culture supernatant of T. terrestris Co3Bag1, grown on carboxymethyl cellulose (CMC), and characterized biochemically. TtXynA showed optimal xylanolytic activity at pH 5.5 and at 85 °C, and retained more than 90% of its activity at a broad pH range (4.5-10). The enzyme is highly thermostable with a half-life of 23.1 days at 65 °C, and active in the presence of several metal ions. Circular dichroism spectra strongly suggest the enzyme gains secondary structures when temperature increases. TtXynA displayed higher substrate affinity and higher catalytic efficiency towards beechwood xylan than towards birchwood xylan, oat-spelt xylan, and CMC. According to its final hydrolysis products, TtXynA displays endo-/exo-activity, yielded xylobiose, an unknown oligosaccharide containing about five residues of xylose and a small amount of xylose on beechwood xylan. Finally, this report represents the description of the first fungal hyperthermophilic xylanase which is produced by T. terrestris Co3Bag1. Since TtXynA displays relevant biochemical properties, it may be a suitable candidate for biotechnological applications carried out at high temperatures, like the enzymatic pretreatment of plant biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Yolanda García-Huante
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Claudia Cano-Ramírez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Rodolfo Marsch-Moreno
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Jorge E Campos
- Laboratorio de Biología Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Guillermo Aguilar-Osorio
- Grupo de Fisiología de Hongos, Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM. Cd. Universitaria, CP 04510, México, Ciudad de México, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 La Escalera Ticomán, 07320, México, Ciudad de México, México
| | - Sergio Trejo-Estrada
- Grupo de Microbiología Industrial, Centro de Investigación en Biotecnología Aplicada-IPN, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México.
| |
Collapse
|
12
|
Terrasan CRF, Aragon CC, Masui DC, Pessela BC, Fernandez-Lorente G, Carmona EC, Guisan JM. β-xylosidase from Selenomonas ruminantium: Immobilization, stabilization, and application for xylooligosaccharide hydrolysis. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1247817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- César Rafael Fanchini Terrasan
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain,
| | - Caio Casale Aragon
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain,
| | - Douglas Chodi Masui
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain,
| | - Benevides Costa Pessela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain, and
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos (CIAL), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain, and
| | - Eleonora Cano Carmona
- Biochemistry and Microbiology Department, Biosciences Institute, Univ Estadual Paulista – UNESP, Rio Claro, São Paulo, Brazil
| | - Jose Manuel Guisan
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain,
| |
Collapse
|
13
|
Borgi I, Gargouri A. A novel high molecular weight thermo-acidoactive β-glucosidase from Beauveria bassiana. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Expression of novel glucose tolerant β-glucosidase on cell surface by Rhodotorula glutinis isolate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11688-95. [PMID: 25389558 DOI: 10.1021/jf502850z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel β-glucosidase named BglW5 from Gongronella sp. was isolated, purified, and characterized for the first time. Under solid state fermentation, the yield of BglW5 was 49.9 U/g fermented medium. BglW5 was stable over a wide pH range of 3.0-8.5 and retained more than 50% of its maximal activity after incubation at 25 °C for 96 h. The half-lives of BglW5 were 20 h at 60 °C, and 1 h at 70 °C. The activity of BglW5 was stimulated by xylose and fructose at concentrations up to 500 mM, with maximal stimulatory effect of 1.6-fold and 2.2-fold, respectively. BglW5 converted isoflavone glycosides to aglycones, with a hydrolysis rate of 96.2% for daidzin and 96.7% for genistin. The productivities were 1.5 mmol L(-1) h(-1) for daidzein and 1.23 mmol L(-1) h(-1) for genistein, respectively. These features suggest that BglW5 has great application potential in the hydrolysis of soybean isoflavone glycosides.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University , Hefei, Anhui 230601, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abdeljalil S, Saibi W, Ben Hmad I, Baklouti A, Ben Mahmoud F, Belghith H, Gargouri A. Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Biotechnol Appl Biochem 2014; 61:432-40. [PMID: 24372593 DOI: 10.1002/bab.1195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/19/2013] [Indexed: 11/11/2022]
Abstract
The current study investigated the production of cellulases and xylanases from the rare fungus Stachybotrys microspora under solid-state fermentation (SSF) on wheat bran (WB). A comparison of both activities was first performed in submerged cultures using various concentrations of WB, glucose, and cellulose as substrates. The maximal activity of β-glucosidases and xylanases was obtained with 2% and 4% WB, respectively, whereas cellulose yielded the highest endoglucanase production. The SSF conditions were therefore consequently optimized. A moisture content of 70% gave the most significant levels of enzyme production. Inoculation by spores led to better results than by preculture, with 10(5) spores per gram of dried matter as the best inoculum dose for all activities tested. Interestingly, the WB-based medium need not to be supplemented by an exogeneous nitrogen source. Considering the richness of S. microspora secreted proteins as lytic hydrolases, the crude extracellular enzyme extracts were successfully tested in two different biotechnological fields: protoplasting of fungi and subsequent extraction of their DNA, paper pulp hydrolysis to produce fermentable sugars.
Collapse
Affiliation(s)
- Salma Abdeljalil
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Walid Saibi
- Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Ines Ben Hmad
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Abir Baklouti
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Feten Ben Mahmoud
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Hafedh Belghith
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Biomass Valorisation and Protein Production in Eucaryotes, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Beitel SM, Knob A. Penicillium miczynskii β-glucosidase: A Glucose-Tolerant Enzyme Produced Using Pineapple Peel as Substrate. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Susan M. Beitel
- Department of Biological Sciences, Midwest State University, Guarapuava, Brazil
| | - Adriana Knob
- Department of Biological Sciences, Midwest State University, Guarapuava, Brazil
| |
Collapse
|
18
|
Biomass hydrolyzing enzymes from plant pathogen Xanthomonas axonopodis pv. punicae: optimizing production and characterization. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0659-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Characterization and constitutive expression of an acidic mesophilic endo-1,4-β-d-xylanohydrolase with high thermotolerance and catalytic efficiency in Pichia pastoris. World J Microbiol Biotechnol 2013; 29:2095-103. [DOI: 10.1007/s11274-013-1374-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
20
|
Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 2013; 14:2875-902. [PMID: 23364611 PMCID: PMC3588020 DOI: 10.3390/ijms14022875] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/12/2012] [Accepted: 01/09/2013] [Indexed: 12/02/2022] Open
Abstract
Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol. The production of β-glucosidase, β-xylosidase and xylanase by Colletotrichum graminicola was optimized using Response Surface Methodology (RSM). Maximal production occurred in wheat bran. Sugarcane trash, peanut hulls and corncob enhanced β-glucosidase, β-xylosidase and xylanase production, respectively. Maximal levels after optimization reached 159.3 ± 12.7 U g−1, 128.1 ± 6.4 U g−1 and 378.1 ± 23.3 U g−1, respectively, but the enzymes were produced simultaneously at good levels under culture conditions optimized for each one of them. Optima of pH and temperature were 5.0 and 65 °C for the three enzymes, which maintained full activity for 72 h at 50 °C and for 120 min at 60 °C (β-glucosidase) or 65 °C (β-xylosidase and xylanase). Mixed with Trichoderma reesei cellulases, C. graminicola crude extract hydrolyzed raw sugarcane trash with glucose yield of 33.1% after 48 h, demonstrating good potential to compose efficient cocktails for lignocellulosic materials hydrolysis.
Collapse
|
21
|
Ye M, Liu X, Zhao L. Production of a Novel Salt-tolerant L-glutaminase from Bacillus amyloliquefaciens
Using Agro-industrial Residues and its Application in Chinese Soy Sauce Fermentation. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/biotech.2013.25.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|