1
|
Wei XZ, Wang H, Xu B, Shen C, Liu J, Ma L. Efficient visible light-driven oxidation of bio-1-butanol over a TiO2-based photocatalyst system. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
2
|
Capilla M, San-Valero P, Izquierdo M, Penya-roja J, Gabaldón C. The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Wu Y, Bai Y, Zhang D, Cheng C, Chen L, Bai F, Xue C. Pleiotropic regulation of a glucose-specific PTS in Clostridium acetobutylicum for high-efficient butanol production from corn stover without detoxification. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:264. [PMID: 31709013 PMCID: PMC6836401 DOI: 10.1186/s13068-019-1604-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/29/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Corn stover (CS) is evaluated as the most favorable candidate feedstock for butanol production via microbial acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum. By independent acid pretreatment and enzymatic hydrolysis, fermentable sugars (mainly glucose and xylose) were released, of which glucose was naturally utilized as the most preferred carbon source by C. acetobutylicum. However, the ABE fermentation using corn stover hydrolysate (CSH) without detoxification is typically limited to poor sugars utilization, butanol production and productivity. In the presence of pretreatment-derived inhibitors, the intracellular ATP and NADH, as important factors involved in cell growth, solventogenesis initiation and stress response, are exceedingly challenged owing to disrupted glucose phosphotransferase system (PTS). Therefore, there is a necessity to develop effective engineering approaches to overcome these limitations for high-efficient butanol production from CSH without detoxification. RESULTS PTS-engineered C. acetobutylicum strains were constructed via overexpression and knockout of gene glcG encoding glucose-specific PTS IICBA, which pleiotropically regulated glucose utilization, cell growth, solventogenesis and inhibitors tolerance. The PTSGlcG-overexpressing strain exhibited high fermentation efficiency, wherein butanol production and productivity was 11.1 g/L and 0.31 g/L/h, compared to those of 11.0 g/L and 0.15 g/L/h with the PTSGlcG-deficient strain. During CSH culture without detoxification, the PTSGlcG-overexpressing strain exhibited desirable inhibitors tolerance and solventogenesis with butanol production of 10.0 g/L, increased by 300% and 400% compared to those of 2.5 and 2.0 g/L with the control and PTSGlcG-deficient strains, respectively. As a result of extra glucose and 10 g/L CaCO3 addition into CSH, butanol production and productivity were further maximized to 12.5 g/L and 0.39 g/L/h. These validated improvements on the PTSGlcG-overexpressing strain were ascribed to not only efficient glucose transport but also its cascading effects on intracellular ATP and NADH generation, solventogenesis initiation and inhibitors tolerance at the exponential growth phase. CONCLUSION The PTSGluG regulation could be an effective engineering approach for high-efficient ABE fermentation from lignocellulosic hydrolysates without detoxification or wastewater generation, providing fundamental information for economically sustainable butanol production with high productivity.
Collapse
Affiliation(s)
- Youduo Wu
- School of Bioengineering, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Yidi Bai
- School of Bioengineering, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Daojing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Lijie Chen
- School of Bioengineering, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| |
Collapse
|
4
|
Lin Z, Liu H, Wu J, Patakova P, Branska B, Zhang J. Effective continuous acetone-butanol-ethanol production with full utilization of cassava by immobilized symbiotic TSH06. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:219. [PMID: 31534478 PMCID: PMC6745785 DOI: 10.1186/s13068-019-1561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Butanol production by fermentation has recently attracted increasingly more attention because of its mild reaction conditions and environmentally friendly properties. However, traditional feedstocks, such as corn, are food supplies for human beings and are expensive and not suitable for butanol production at a large scale. In this study, acetone, butanol, and ethanol (ABE) fermentation with non-pretreated cassava using a symbiotic TSH06 was investigated. RESULTS In batch fermentation, the butanol concentration of 11.6 g/L was obtained with a productivity of 0.16 g/L/h, which was similar to that obtained from glucose system. A full utilization system of cassava was constructed to improve the fermentation performance, cassava flour was used as the substrate and cassava peel residue was used as the immobilization carrier. ABE fermentation with immobilized cells resulted in total ABE and butanol concentrations of 20 g/L and 13.3 g/L, which were 13.6% and 14.7% higher, respectively, than those of free cells. To further improve the solvent productivity, continuous fermentation was conducted with immobilized cells. In single-stage continuous fermentation, the concentrations of total ABE and butanol reached 9.3 g/L and 6.3 g/L with ABE and butanol productivities of 1.86 g/L/h and 1.26 g/L/h, respectively. In addition, both of the high product concentration and high solvent productivity were achieved in a three-stage continuous fermentation. The ABE productivity and concentration was 1.12 g/L/h and 16.8 g/L, respectively. CONCLUSIONS The results indicate that TSH06 could produce solvents from cassava effectively. This study shows that ABE fermentation with cassava as a substrate could be an efficient and economical method of butanol production.
Collapse
Affiliation(s)
- Zhangnan Lin
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Hongjuan Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Jing Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Jianan Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
5
|
Abo BO, Gao M, Wang Y, Wu C, Wang Q, Ma H. Production of butanol from biomass: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20164-20182. [PMID: 31115808 DOI: 10.1007/s11356-019-05437-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
At present, diminishing oil resources and increasing environmental concerns have led to a shift toward the production of alternative biofuels. In the last few decades, butanol, as liquid biofuel, has received considerable research attention due to its advantages over ethanol. Several studies have focused on the production of butanol through the fermentation from raw renewable biomass, such as lignocellulosic materials. However, the low concentration and productivity of butanol production and the price of raw materials are limitations for butanol fermentation. Moreover, these limitations are the main causes of industrial decline in butanol production. This study reviews butanol fermentation, including the metabolism and characteristics of acetone-butanol-ethanol (ABE) producing clostridia. Furthermore, types of butanol production from biomass feedstock are detailed in this study. Specifically, this study introduces the recent progress on the efficient butanol production of "designed" and modified biomass. Additionally, the recent advances in the butanol fermentation process, such as multistage continuous fermentation, metabolic flow change of the electron carrier supplement, continuous fermentation with immobilization and recycling of cell, and the recent technical separation of the products from the fermentation broth, are described in this study.
Collapse
Affiliation(s)
- Bodjui Olivier Abo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonglin Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824. BIORESOURCE TECHNOLOGY 2019; 272:561-569. [PMID: 30396113 DOI: 10.1016/j.biortech.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
When lignocellulosic biomass was used for acetone-butanol-ethanol (ABE) fermentation, several lignocellulose-derived inhibitors, which are toxic to Clostridium acetobutylicum, were generated during acid hydrolysis process and seriously hindered the industrialization of lignocellulosic butanol. In this study, an engineered strain 824(proABC) with significantly improved tolerance to multiple lignocellulose-derived inhibitors (formic acid and phenolic compounds) was constructed by strengthening the proline biosynthesis. The engineered strain exhibited more effective synthesis ability of proline and scavenging ability of reactive oxygen species (ROS). Consequently, the butanol produced by 824(proABC) was 1-, 2.4- or 3.4-fold higher than that of the wild type strain when using the undetoxified hydrolysate of soybean straw, rice straw or corn straw as the substrate, respectively. Therefore, enhancing the proline biosynthesis can be used as an effective strategy to improve the tolerance of C. acetobutylicum to multiple lignocellulose-derived inhibitors, and 824(proABC) has great potential to produce butanol from undetoxified lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yukai Suo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Ahlawat S, Kaushal M, Palabhanvi B, Muthuraj M, Goswami G, Das D. Nutrient modulation based process engineering strategy for improved butanol production from Clostridium acetobutylicum. Biotechnol Prog 2018; 35:e2771. [PMID: 30592566 DOI: 10.1002/btpr.2771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/22/2018] [Indexed: 01/08/2023]
Abstract
The present study demonstrates a process engineering strategy to achieve high butanol titer and productivity from wild type Clostridium acetobutylicum MTCC 11274. In the first step, two different media were optimized with the objectives of maximizing the biomass and butanol productivity, respectively. In the next step, attributes of these two media compositions were integrated to design a two-stage fed-batch process which resulted in maximal butanol productivity of 0.55 g L-1 h-1 with titer of 13.1 g L-1 . Further, two-stage fed-batch process along with combinatorial use of magnesium limitation and calcium supplementation resulted in the highest butanol titer and productivity of 16.5 g L-1 and 0.59 g L-1 h-1 , respectively. Finally, integration of the process with gas stripping and modulation of feeding duration resulted in a cumulative butanol titer of 54.3 g L-1 and productivity of 0.58 g L-1 h-1 . The strategy opens up possibility of developing a viable butanol bioprocess. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2771, 2019.
Collapse
Affiliation(s)
- Saumya Ahlawat
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Mehak Kaushal
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Basavaraj Palabhanvi
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Muthusivaramapandian Muthuraj
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Gargi Goswami
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Debasish Das
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| |
Collapse
|
8
|
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 270:702-721. [PMID: 30195696 DOI: 10.1016/j.biortech.2018.08.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source. The butanol-producing bacteria, i.e., Clostridia sp., can uptake a wide range of hexoses, pentoses, and oligomers obtained from hydrolysis of cellulose and hemicellulose content of lignocelluloses. The present work is dedicated to reviewing different processes containing pretreatment and hydrolysis of hemicellulose and cellulose developed for preparing fermentable hydrolysates for biobutanol production.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
Ou J, Xu N, Ernst P, Ma C, Bush M, Goh K, Zhao J, Zhou L, Yang ST, Liu X(M. Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Kaushal M, Ahlawat S, Mukherjee M, Muthuraj M, Goswami G, Das D. Substrate dependent modulation of butanol to ethanol ratio in non-acetone forming Clostridium sporogenes NCIM 2918. BIORESOURCE TECHNOLOGY 2017; 225:349-358. [PMID: 27912184 DOI: 10.1016/j.biortech.2016.11.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Present study reports a non-acetone producing Clostridium sporogenes strain as a potential producer of liquid biofuels. Alcohol production was positively regulated by sorbitol and instant dry yeast as carbon and nitrogen sources respectively. Media optimization resulted in maximum butanol and ethanol titer (gL-1) of 12.1 and 7.9 respectively. Depending on the combination of carbon sources, the organism was found to manipulate its metabolism towards synthesis of either ethanol or butanol, thereby affecting the total alcohol titer. Among various dual substrate combinations, glucose-glycerol mixture in the ratio of 60:40 resulted in maximum butanol and ethanol titer (gL-1) of 11.9 and 12.1 respectively with total alcohol productivity of 0.59gL-1h-1. In the mixture, when pure glycerol was replaced with crude glycerol, butanol and ethanol titer (gL-1) of 11.2 and 11.7 was achieved. Hence, the strain shows immense potential for biofuels production using crude glycerol as cheap substrate.
Collapse
Affiliation(s)
- Mehak Kaushal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Saumya Ahlawat
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Mayurketan Mukherjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Gargi Goswami
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
11
|
Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 2016; 363:fnw033. [DOI: 10.1093/femsle/fnw033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022] Open
|
12
|
Köhler KAK, Rühl J, Blank LM, Schmid A. Integration of biocatalyst and process engineering for sustainable and efficientn-butanol production. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Jana Rühl
- Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB); Aachen Biology and Biotechnology (ABBt); RWTH Aachen University; Aachen Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Leipzig Germany
| |
Collapse
|
13
|
Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). BIORESOURCE TECHNOLOGY 2014; 174:176-81. [PMID: 25463797 DOI: 10.1016/j.biortech.2014.09.152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 05/23/2023]
Abstract
A potential dedicated energy crop (switchgrass) and an invasive (North America) plant species (phragmites) were compared as potential substrates for acetone butanol ethanol (ABE) fermentation. Both biomass were pretreated with 1% (w/v) NaOH and subjected to enzymatic hydrolysis. Total reducing sugar yields were 365 and 385gkg(-1) raw biomass for switchgrass and phragmites. Fermentation of the hydrolysates resulted in overall ABE yields of 146 and 150gkg(-1) (per kg dry plant material), with a theoretical maximum of 189 and 208gkg(-1), respectively. Though similar overall solvent yields were obtained from both crops, the largest carbon loss in the case of switchgrass occurred during pretreatment, while the largest loss in the case of phragmites occurred to enzymatic hydrolysis. These findings suggest that higher overall yields are achievable and that both crops are suitable feedstocks for butanol fermentation.
Collapse
Affiliation(s)
- Kai Gao
- Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Simone Boiano
- Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Dipartimento di Ingegeria Chimica, dei Materiali e della Produzione Industriali, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegeria Chimica, dei Materiali e della Produzione Industriali, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
14
|
Perspective and prospective of pretreatment of corn straw for butanol production. Appl Biochem Biotechnol 2014; 172:840-53. [PMID: 24122704 DOI: 10.1007/s12010-013-0548-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.
Collapse
|
15
|
Baral NR, Shah A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2014; 98:9151-72. [DOI: 10.1007/s00253-014-6106-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
|
16
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
17
|
Li HG, Luo W, Wang Q, Yu XB. Direct Fermentation of Gelatinized Cassava Starch to Acetone, Butanol, and Ethanol Using Clostridium acetobutylicum Mutant Obtained by Atmospheric and Room Temperature Plasma. Appl Biochem Biotechnol 2014; 172:3330-41. [DOI: 10.1007/s12010-014-0765-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/29/2014] [Indexed: 11/28/2022]
|
18
|
Li J, Baral NR, Jha AK. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 2013; 30:1145-57. [PMID: 24165749 DOI: 10.1007/s11274-013-1542-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China,
| | | | | |
Collapse
|